Catalysis Letters

, Volume 131, Issue 3–4, pp 356–363 | Cite as

Carbon Nanotube Growth on Calcium Carbonate Supported Molybdenum-Transition Bimetal Catalysts

  • Zhongrui Li
  • Enkeleda Dervishi
  • Yang Xu
  • Viney Saini
  • Meena Mahmood
  • Olumide Dereck Oshin
  • Alexandru R. Biris
  • Alexandru S. Biris
Article

Abstract

A comparison of different catalyst systems (Fe–Mo, Co–Mo or Ni–Mo nanoparticles supported on calcium carbonate) has been performed in order to optimize the carbon nanotube (CNT) growth. The influences of the reaction temperature, metal loading and carbon source on the synthesis of CNTs were investigated. Dense CNT networks have been synthesized by thermal chemical vapor deposition (CVD) of acetylene at 720 °C using the Co–Mo/CaCO3 catalyst. The dependence of the CNT growth on the most important parameters was discussed exemplarily on the Co catalyst system. Based on the experimental observations, a phenomenological growth model for CVD synthesis of CNTs was proposed. The synergy effect of Mo and active metals was also discussed.

Keywords

Carbon nanotubes CVD Co–Mo/CaCO3 catalyst hydrocarbon 

References

  1. 1.
    Kong JA, Cassell AM, Dai H (1998) Chem Phys Lett 292:56CrossRefGoogle Scholar
  2. 2.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91CrossRefGoogle Scholar
  3. 3.
    Kukovecz A, Konya Z, Nagaraju N, Wiullems I, Tamasi A, Fonseca A, Nagy JB, Kiricsi I (2000) Phys Chem Chem Phys 2:3071CrossRefGoogle Scholar
  4. 4.
    Ivanov V, Nagy JB, Lambin P, Lucas A, Zhang XB, Zhang XF, Bernaerts D, Antendeloo G, Melinckx S, Anlanduyt J (2002) Chem Phys Lett 223:329CrossRefGoogle Scholar
  5. 5.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Nature 395:878CrossRefGoogle Scholar
  6. 6.
    Couteau E, Hernardi K, Seo JW, Thiên-Nga L, Mikó Cs, Gaál R, Forró L (2003) Chem Phys Lett 378:9CrossRefGoogle Scholar
  7. 7.
    Schmitt T, Biris AS, Miller D, Biris AR, Lupu D, Trigwell S, Rahman ZU (2006) Carbon 44(10):2032CrossRefGoogle Scholar
  8. 8.
    Biris AR, Biris AS, Lupu D, Trigwell S, Dervishi E, Rahman Z, Marginean P (2006) Chem Phys Lett 429(1–3):204CrossRefGoogle Scholar
  9. 9.
    Piedigrosso P, Konya Z, Colomer JF, Fonseca A, Van Tendeloo G, Nagy JB (2000) Phys Chem Chem Phys 2:163CrossRefGoogle Scholar
  10. 10.
    Louis B, Gulino G, Vieira R, Amadou J, Dintzer T, Galvagno S, Centi G, Ledoux MJ, Pham-Huu C (2005) Catalysis Today 102–103:23CrossRefGoogle Scholar
  11. 11.
    Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Veríssimo C (2006) Carbon 44:2202CrossRefGoogle Scholar
  12. 12.
    Afre RA, Soga T, Jimbo T, Kumar M, Ando Y, Sharon M (2005) Chem Phys Lett 414:6–10CrossRefGoogle Scholar
  13. 13.
    Lee YD, Lee HJ, Han JH, Yoo JE, Lee YH, Kim JK, Nahm S, Ju BK (2006) J Phys Chem B 110:5310CrossRefGoogle Scholar
  14. 14.
    Wang B, Patrick Poa CH, Wei L, Li LJ, Yang Y, Chen Y (2007) J Am Chem Soc 129:9014CrossRefGoogle Scholar
  15. 15.
    Baker RT, Harris P, (1978) in “Chemistry and physics of carbon” (Walker JPL and Thrower PA, Eds.), Vol. 14, Dekker, New York/Basel, 83Google Scholar
  16. 16.
    Kong JA, Cassell AM, Dai H (1998) Chem Phys Lett 292:567CrossRefGoogle Scholar
  17. 17.
    Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE (2001) Chem Mater 14:1853CrossRefGoogle Scholar
  18. 18.
    Kim DY, Ch.-M, Yang Y, Park S, Kim KK, Jeong SY, Han JH, Lee YH (2005) Chem Phys Lett 413(1–3):135CrossRefGoogle Scholar
  19. 19.
    Seidel R, Duesberg GS, Unger E, Graham AP, Liebau M, Kreupl F (2004) J Phys Chem B 108:1888CrossRefGoogle Scholar
  20. 20.
    Kanzow H, Ding A (1999) Phys Rev B 60:11180CrossRefGoogle Scholar
  21. 21.
    Guerret-Piécourt C, Le Bouar Y, Lolseau A, Pascard H (1994) Nature 372:761CrossRefGoogle Scholar
  22. 22.
    Little RB (2001) Magnetic production of carbon nanotubes and filaments. US Patent 6761871Google Scholar
  23. 23.
    MacLaren JM, Schulthess TC, Butler WH, Sutton R, McHenry M (1999) J Appl Phys 85:4833CrossRefGoogle Scholar
  24. 24.
    Spišák D, Hafner J (2004) Phys Rev B 70:014430CrossRefGoogle Scholar
  25. 25.
    Little RB (2003) J Cluster Sci 14:135CrossRefGoogle Scholar
  26. 26.
    Tsukerblat BS, Palii AV, Mirovitskii VYu, Ostrovsky SM, Turta K, Jovmir T, Shova S, Bartolome J, Evangelisti M, Filoti G (2001) J Chem Phys 115:9528CrossRefGoogle Scholar
  27. 27.
    Dervishi E, Li Z, Biris AR, Lupu D, Trigwell S, Biris AS (2007) Chem Mater 19(2):179CrossRefGoogle Scholar
  28. 28.
    Schaffel F, Kramberger C, Rummeli MH, Grimm D, Mohn E, Gemming T, Pichler T, Rellinghaus B, Buchner B, Schultz L (2007) Chem Mater 19:5006CrossRefGoogle Scholar
  29. 29.
    Rummeli MH, Kramberger C, Loffler M, Jost O, Bystrzejewski M, Gruneis A, Gemming T, Pompe W, Buchner B, Pichler T (2007) J Phys Chem B 111:8234CrossRefGoogle Scholar
  30. 30.
    Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) J Nanoparticle Res 4:131CrossRefGoogle Scholar
  31. 31.
    Franklin NR, Dai H (2000) Adv Mater 12:890CrossRefGoogle Scholar
  32. 32.
    Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2005) Nature 433:476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhongrui Li
    • 1
  • Enkeleda Dervishi
    • 1
  • Yang Xu
    • 1
  • Viney Saini
    • 1
  • Meena Mahmood
    • 1
  • Olumide Dereck Oshin
    • 1
  • Alexandru R. Biris
    • 2
  • Alexandru S. Biris
    • 1
  1. 1.Nanotechnology Center and Applied ScienceUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations