Skip to main content
Log in

Slurry-Phase Fischer–Tropsch Synthesis Using Co/γ-Al2O3, Co/SiO2 and Co/TiO2: Effect of Support on Catalyst Aggregation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic performance of Co/γ-Al2O3, Co/SiO2 and Co/TiO2 catalysts has been investigated in a slurry-phase Fischer–Tropsch Synthesis (FTS). Although Co/SiO2 catalyst shows higher CO conversion than the other catalysts, the intrinsic activity is much higher on Co/TiO2 due to large pore size and low deactivation of large cobalt particles by reoxidation mechanism. Co/γ-Al2O3 catalyst confirms low formation rate of oxygenates and C5+ selectivity because of deactivation of catalyst due to catalyst aggregation and reoxidation by the in situ generated water during the FTS reaction. Long-chain hydrocarbons such as wax formed during FTS reaction generally contains water and trace amount of oxygenate which are conducive to the formation of a macro-emulsion of wax products. Formation of such macro-emulsion on the catalyst suggests that the presence of proper amount of alcohol content derived FTS reaction on large pore of catalyst inhibits the catalyst aggregation. The intrinsic activity (turn-over frequency; TOF) of cobalt-based catalysts, in a slurry-phase FTS reaction, is affected by the average pore size of catalyst, cobalt particle size, degree of reduction of cobalt species and possible reoxidation by in situ generated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Y, Liu Y, Yang G, Sun S, Tsubaki N (2007) Appl Catal A 321:79

    Article  CAS  Google Scholar 

  2. Storsæter S, Tøtda B, Walmsley JC, Tanem BS (2005) J Catal 236:139

    Article  Google Scholar 

  3. Iglesia E (1997) Appl Catal A 161:59

    Article  CAS  Google Scholar 

  4. Reuel RC, Bartholomew CH (1984) J Catal 85:78

    Article  CAS  Google Scholar 

  5. Riva R, Miessner H, Vitali R, Del Piero G (2000) Appl Catal A 196:111

    Article  CAS  Google Scholar 

  6. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  7. Panpranot J, Goodwin J G Jr, Sayari A (2002) J Catal 211:530

    CAS  Google Scholar 

  8. Bae JW, Lee YJ, Park JY, Jun KW (2008) Energy Fuels 22:2885

    Article  CAS  Google Scholar 

  9. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  10. Oukaci R, Singleton AH, Goodwin J G Jr (1999) Appl Catal A 186:129

    Article  CAS  Google Scholar 

  11. Khodakov AY, Girardon JS, Griboval-Constant A, Lermontov AS, Chernavskii PA (2004) Stud Surf Sci Catal 147:295

    Article  CAS  Google Scholar 

  12. Zhang Y, Wei D, Hammache S, Goodwin JG Jr (1999) J Catal 188:281

    Article  CAS  Google Scholar 

  13. Xiong J, Borg O, Blekkan EA, Holmen A (2008) Catal Commun 9:2327

    Article  CAS  Google Scholar 

  14. Moradi GR, Basir MM, Taeb A, Kiennemann A (2003) Catal Comm 4:27

    Article  CAS  Google Scholar 

  15. Chu W, Chernavskii PA, Gengembre L, Pankina GA, Fongarland P, Khodakov AY (2007) J Catal 252:215

    Article  CAS  Google Scholar 

  16. Park SJ, Bae JW, Oh JH, Chary KVR, Sai Prasad PS, Jun KW, Rhee YW (2009) J Mol Catal A 298:81

    Article  CAS  Google Scholar 

  17. Schulz H, Nie Z, Ousmanov F (2002) Catal Today 71:351

    Article  CAS  Google Scholar 

  18. Bae JW, Kim SM, Lee YJ, Lee MJ, Jun KW Catal Commun doi:10.1016/j.catcom.2009.02.023

  19. Okabe K, Li XH, Wei MD, Arakawa H (2004) Catal Today 89:431

    Article  CAS  Google Scholar 

  20. Dalai AK, Davis BH (2008) Appl Catal A 348:1

    Article  CAS  Google Scholar 

  21. Chakrabarty T Wittenbrink RJ Berlowitz PJ Ansell LL USP 6677388 B2

  22. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of KEMCO and GTL Technology Development Consortium (Korea National Oil Corp., Daelim Industrial Co., Ltd, Doosan Mecatec Co., Ltd, Hyundai Engineering Co. Ltd and SK Energy Co. Ltd) under “Energy & Resources Technology Development Programs” of the Ministry of Knowledge Economy, Republic of Korea. P. K. Khanna thanks KOSEF for a Brain Pool fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, JH., Bae, J.W., Park, SJ. et al. Slurry-Phase Fischer–Tropsch Synthesis Using Co/γ-Al2O3, Co/SiO2 and Co/TiO2: Effect of Support on Catalyst Aggregation. Catal Lett 130, 403–409 (2009). https://doi.org/10.1007/s10562-009-0021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0021-0

Keywords

Navigation