Skip to main content
Log in

Perovskite-Like Mixed Oxides (LaSrMn1−x Ni x O4+δ, 0 ≤ x ≤ 1) as Catalyst for Catalytic NO Decomposition: TPD and TPR Studies

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic NO decomposition on LaSrMn1−x Ni x O4+δ (0 ≤ x ≤ 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O2-TPD and H2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest ΔT and ΔE values). The close relationships between activity and ΔT or ΔE indicate that ΔT and ΔE are important parameters of catalyst for NO decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, Zhao Z, Xu CM, Duan AJ, Jiang GY (2008) J Phys Chem C 112:5930 references therein

    Article  CAS  Google Scholar 

  2. Voorhoeve RJH (1977) Advanced materials in catalysis. Academic Press, New York, p 129

    Google Scholar 

  3. Wang H, Zhao Z, Liang P, Xu CM, Duan AJ, Jiang GY, Xu J, Liu J (2008) Catal Lett 124:91

    Article  CAS  Google Scholar 

  4. Kubaschewski O, Alckock CB, Spencer PJ (1993) Materials thermochemistry, 6th edn. Pergamon Press, Oxford

    Google Scholar 

  5. Voorhoeve RJH (1977) Advanced materials in catalysi. Academic Press, New York, p 129

    Google Scholar 

  6. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ion 129:163

    Article  CAS  Google Scholar 

  7. Tofan C, Klvana D, Kirchnerova J (2002) Appl Catal A Gen 223:275

    Article  CAS  Google Scholar 

  8. Buciuman FC, Joubert E, Menezo JC, Barbier J (2001) Appl Catal A Gen 35:149

    CAS  Google Scholar 

  9. Hansen KK, Skou EM, Christensen H, Turek T (2000) J Catal 199:132

    Article  Google Scholar 

  10. Teraoka Y, Fukada H, Kagawa S (1990) Chem Lett: 1

  11. Zhu JJ, Xiao DH, Li J, Yang XG, Wu Y (2005) J Mol Catal A Chem 234:99

    Article  CAS  Google Scholar 

  12. Zhu JJ, Zhao Z, Xiao DH, Li J, Yang XG, Wu Y (2005) Electrochem Commun 7:58

    Article  CAS  Google Scholar 

  13. Ladavos AK, Pomonis PJ (1991) J Chem Soc Faraday Trans 87:3291

    Article  CAS  Google Scholar 

  14. Zhao Z, Yang XG, Wu Y (1996) Appl Catal B Environ 8:281

    Article  CAS  Google Scholar 

  15. Ladavos AK, Pomonis PJ (1997) Appl Catal A Gen 165:73

    Article  CAS  Google Scholar 

  16. Zhu JJ, Xiao DH, Li J, Xie XF, Yang XG, Wu Y (2005) J Mol Catal A Chem 233:29

    Article  CAS  Google Scholar 

  17. Yu ZL, Gao LZ, Yuan SY, Wu Y (1992) J Chem Soc Faraday Trans 88:3245

    Article  CAS  Google Scholar 

  18. Reutler P, Friedt O, Büchner B, Braden M, Revcolevschi A (2003) J Cryst Growth 249:222

    Article  CAS  Google Scholar 

  19. Yamashita T, Vannice A (1996) J Catal 163:158

    Article  CAS  Google Scholar 

  20. Martynczuk J, Arnold M, Wang H, Caro J, Feldhoff A (2007) Adv Mater 19:2134

    Article  CAS  Google Scholar 

  21. Białobok B, Trawczynski J, Mista W, Zawadzki M (2007) Appl Catal B Environ 72:395

    Article  Google Scholar 

  22. Augustin CO, Kalai Selvan R, Nagaraj R, John Berchmans L (2005) Mater Chem Phys 89:406

    Article  CAS  Google Scholar 

  23. Zhong H, Zeng R (2006) J Serb Chem Soc 71:1049

    Article  CAS  Google Scholar 

  24. Shin S, Arakawa H, Hatakeyama Y, Ogawa K, Shimomura K (1979) Mat Res Bull 14:633

    Article  CAS  Google Scholar 

  25. Teraoka Y, Harada T, Kagawa S (1998) J Chem Soc Faraday Trans 94:1887

    Article  CAS  Google Scholar 

  26. Ishihara T, Ando M, Sada K, Takiishi K, Yamada K, Nishiguchi H, Takita Y (2003) J Catal 220:104

    Article  CAS  Google Scholar 

  27. Moden B, Costa PD, Fonfe B, Lee DK, Iglesia E (2002) J Catal 209:75

    Article  CAS  Google Scholar 

  28. Yokoi Y, Uchida H (1998) Catal Today 42:167

    Article  CAS  Google Scholar 

  29. Patcas F, Buciuman FC, Zsako J (2000) Thermochim Acta 360:71

    Article  CAS  Google Scholar 

  30. Seiyama T (1993) Properties and Applications of Perovskite-type oxides In: Tejuca LG, Fierro JLG (Eds) Marcel Dekker, New York, p 215

  31. Inui T, Iwamoto S, Kojo S, Shimizu S, Hirabayashi T (1994) Catal Today 22:41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of science and technology of China (2001AA 324060) and the Natural science foundation of China (20177022) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Xiao, D., Li, J. et al. Perovskite-Like Mixed Oxides (LaSrMn1−x Ni x O4+δ, 0 ≤ x ≤ 1) as Catalyst for Catalytic NO Decomposition: TPD and TPR Studies. Catal Lett 129, 240–246 (2009). https://doi.org/10.1007/s10562-008-9807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9807-8

Keywords

Navigation