Skip to main content
Log in

Mechanistic Studies of Osmium(VIII) Catalysed Oxidation of Sulfanilic Acid by Hexacyanoferrate (III) in Alkaline Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The kinetics of osmium(VIII) catalyzed oxidation of sulfanilic acid (p-aminobenzenesulfonic acid) by hexacyanoferrate(III) (HCF(III)) in alkaline medium was studied spectrophotometrically. The reaction showed first order kinetics in hexacyanoferrate(III) and osmium concentrations and an order of less than unity in sulfanilic acid (SAA) and alkali concentrations. The rate of reaction increased with increase in alkali concentration. Increasing ionic strength and dielectric constant of the medium increased the rate of the reaction. A retarding effect was observed by one of the products i.e. hexacyanoferrate(II) (HCF(II)). A mechanism involving the formation of a complex between sulfanilic acid and osmium(VIII) species, [(OsO5(OH)]3− (in presence of high OH concentrations), has been proposed. The main products were identified by spectral studies. The reaction constants involved in the mechanism are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Kelson EP, Ericson PP (2000) Int J Chem Kinet 32:760

    Article  CAS  Google Scholar 

  2. Vovk AI, Muraveva IV, Kukhar VP, Baklan VF (2000) Russ J Gen Chem 70:1108

    CAS  Google Scholar 

  3. Speakman PT, Waters WA (1955) J Chem Soc 40

  4. Singh VN, Singh MP, Saxena BL, Singh MP (1969) Can J Chem 47:1051

    Article  CAS  Google Scholar 

  5. Singh VN, Singh MP, Saxena BL (1970) Indian J Chem 8:529

    CAS  Google Scholar 

  6. Brewster RQ, Mcewen WE (1971) Organic chemistry, 3rd edn. Prentice-Hall, New Delhi

    Google Scholar 

  7. Morrison RT, Boyd RN (2001) Organic chemistry, 6th edn. Prentice-Hall, New Delhi, p 862

    Google Scholar 

  8. Panigrahi GP, Nayak RN (1982) React Kinet Catal Lett 21:283

    Article  CAS  Google Scholar 

  9. Caro A, Cortes G, Cerda V (1990) Analyst (London) 115:753

    Article  CAS  Google Scholar 

  10. Otto M, Werner G (1980) Z Chem 20:379

    CAS  Google Scholar 

  11. Dziegiec J (1979) Pol J Chem 53:1821

    CAS  Google Scholar 

  12. Bontschev PR, Alexiev AA (1970) J Inorg Nucl Chem 32:2237

    Article  Google Scholar 

  13. Bontschev PR, Alexiev AA, Dimitrova B (1969) Talanta 16:597

    Article  CAS  Google Scholar 

  14. Agrawal MC, Upadhyay SK (1983) J Sci Ind Res 42:508

    CAS  Google Scholar 

  15. Sirsalmath KT, Hiremath CV, Nandibewoor ST (2006) J Appl Cat A Gen 305:79

    Article  CAS  Google Scholar 

  16. Farokhi SA, Nandibewoor ST (2003) Tetrahedron 59:7595

    Article  CAS  Google Scholar 

  17. Jeffery GH, Bassett J, Mendham J, Denney RC (1996) Vogel’s textbook of quantitative chemical analysis, ELBS Longman, 5th edn. Essex, England, p 339

    Google Scholar 

  18. Sexena OC (1967) Microchem J 12:609

    Article  Google Scholar 

  19. Furniss BS, Hannaford AJ, Rogers V, Smith PWG, Tatchell AR (1994) Vogel’s textbook of practical organic chemistry, ELBS, 5th edn. Essex, England

    Google Scholar 

  20. Upadhyay A, Upadhyay K, Nath N (1993) Biophysical chemistry principles and techniques, 1st edn. Himalaya Publishing House, Bombay, India, p 235

  21. Feigl F (1975) Spot tests in organic analysis. Elsevier, New York, pp. 283, 289, 195

  22. Silverstein SM, Clayton BG, Terence CM (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York

    Google Scholar 

  23. Bellamy LJ (1958) The IR spectra of complex organic molecules, 2nd edn. Methuen and Co., London, p 425

    Google Scholar 

  24. Jeffery GH, Bassett J, Mendham J, Denney RC (1996) Vogel’s textbook of quantitative chemical analysis, ELBS Longman, 5th edn. Essex, England, p 384

  25. Lide DR (Ed) (1992) Hand book of chemistry and physics chemical rubber publishing company, 73rd edn. London, pp 8–51

  26. Swinehart JH (1967) J Inorg Nucl Chem 29:2313

    Article  CAS  Google Scholar 

  27. Singh MP, Ghosh S (1955) Z Phys Chem (Leipzig) 204:1

    CAS  Google Scholar 

  28. Sing MP, Ghosh S (1957) Z Phys Chem (Leipzig) 207:187

    Google Scholar 

  29. Singh MP, Ghosh S (1957) Z Phys Chem (Leipzig) 207:198

    CAS  Google Scholar 

  30. Wiberg KB, Nigh WG (1965) J Am Chem Soc 87:3849

    Article  CAS  Google Scholar 

  31. Kochi JK, Graybill BM, Kwiz M (1964) J Am Chem Soc 86:5257

    Article  CAS  Google Scholar 

  32. Singh VN, Singh MP, Saxena BBL (1969) J Am Chem Soc 91:2643

    Article  CAS  Google Scholar 

  33. Hiremath SC, Chimatadar SA, Raju JR (1994) Transition Met Chem 19:636

    Article  CAS  Google Scholar 

  34. Lancaster JM, Murray RS (1971) J Chem Soc (A) 2755

  35. Nandibewoor ST, Hiremath GA, Timmanagoudar PL (2000) Transition Met Chem 25:394

    Article  CAS  Google Scholar 

  36. Martinez M, Pitarque MA, Eldik RV (1996) J Chem Soc Dalton Trans 2665

  37. Rangappa KS, Anita N, Made Gowda NM (2001) Synth React Inorg Met Org Chem 31:1499

    Article  CAS  Google Scholar 

  38. Amis ES (1966) Solvent effects on reaction rates and mechanism. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farokhi, S.A., Nandibewoor, S.T. Mechanistic Studies of Osmium(VIII) Catalysed Oxidation of Sulfanilic Acid by Hexacyanoferrate (III) in Alkaline Medium. Catal Lett 129, 207–214 (2009). https://doi.org/10.1007/s10562-008-9791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9791-z

Keywords

Navigation