Skip to main content
Log in

A Six-Lump Kinetic Model for Olefin Hydrogenation, Hydroisomerization and Aromatization in FCC Gasoline Hydro-Upgrading

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A six-lump kinetic model was developed to predict the yields of the target products i-paraffin and aromatics in the FCC gasoline hydro-upgrading process aiming at olefin reduction and octane preservation. The experimental data obtained in a fixed bed reactor were used to estimate the eight kinetic constants and the corresponding activation energies in the model using the Marquardt algorithm. The model testing results revealed that the model predictions were in good agreement with the experimental results, indicating the excellent reliability of the model. Furthermore, the model could be extended to different feedstocks and wide operating conditions. The optimal operating conditions for producing Euro IV clean gasoline with the desired olefin and aromatics contents were determined on the basis of the predicted product yields and verified by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a i :

Concentration of lump i (mol g −1gas )

k i :

Reaction rate constant of lump i (h−1)

k j :

Reaction rate constant of lump j (h−1)

k ji :

Rate constant for the reaction of lump j to lump i (h−1)

\( \overline{M} \) :

Average molecular weight of the gas mixture (g mol−1)

M i :

Molecular weight of lump i (g mol−1)

P :

Reaction pressure (Pa)

R :

Gas constant, 8.314 J/(mol· K)

R HO :

Hydrogen-to-oil weight ratio

S w :

Space velocity (h−1)

T :

Reaction temperature (K)

X :

Dimensionless reactor length

y i :

Yield of lump i (wt%)

y c i :

Calculated yield of lump i (wt%)

y e i :

Experimental yield of lump i (wt%)

Z :

Compressibility factor of the gas mixture

ν ji :

Stoichiometric coefficient for the reaction of lump j to lump i

ρ :

Gas density (g/cm3)

References

  1. Ouyang F, Weng H (2007) Petrol Sci Technol 25:399

    Article  CAS  Google Scholar 

  2. Fan Y, Lu J, Shi G, Liu H, Bao XJ (2007) Catal Today 125:220

    Article  CAS  Google Scholar 

  3. Babich IV, Moulijin JA (2003) Fuel 82:607

    Article  CAS  Google Scholar 

  4. Fan Y, Lin X, Shi G, Liu H, Bao XJ (2007) Micropor Mesopor Mater 98:174

    Article  CAS  Google Scholar 

  5. Dupain X, Gamas ED, Madon R, Kelkar CP, Makkee M, Moulijn JA (2003) Fuel 82:1559

    CAS  Google Scholar 

  6. Hagelberg P, Eilos I, Hiltunen J, Lipiainen K, Niemi VM, Aittamaa J, Krause AOI (2002) Appl Catal A Gen 223:73

    Article  CAS  Google Scholar 

  7. Ellis RC, Li X, Riggs JB (1998) AIChE J 44:2068

    Article  CAS  Google Scholar 

  8. Wang L, Yang B, Wang Z (2005) Chem Eng J 109:1

    Article  CAS  Google Scholar 

  9. You H, Xu C, Gao J, Liu Z, Yan P (2006) Catal Commun 7:554

    Article  CAS  Google Scholar 

  10. Surla K, Vleeming H, Guillaume D, Galtier P (2004) Chem Eng Sci 59:4773

    Article  CAS  Google Scholar 

  11. Ocaranza E, González H, Ramírez J (2004) Chem Eng Sci 59:5679

    Article  CAS  Google Scholar 

  12. Fan Y, Lei D, Shi G, Bao XJ (2006) Catal Today 114:388

    Article  CAS  Google Scholar 

  13. Fan Y, Bao XJ, Lei D, Shi G, Wei WS, Xu J (2005) Fuel 84:435

    Article  CAS  Google Scholar 

  14. Fan Y, Bao XJ, Shi G (2005) Catal Lett 105:67

    Article  CAS  Google Scholar 

  15. Fan Y, Bao XJ, Shi G, Wei WS, Xu J (2004) Appl Catal A Gen 275:61

    Article  CAS  Google Scholar 

  16. Liang W (2000) Heavy oil chemistry. China Petroleum University Press, Dongying

    Google Scholar 

  17. Fan Y, Yin JZ, Shi G, Liu HY, Bao XJ (2008) Appl Catal B Environ (submitted)

  18. Park KC, Ihm SK (2001) Appl Catal A Gen 203:201

    Article  Google Scholar 

  19. Kuznetsov PN (2003) J Catal 218:12

    Article  CAS  Google Scholar 

  20. Du H, Fairbridge C, Yang H, Ring Z (2005) Appl Catal A Gen 294:1

    Article  CAS  Google Scholar 

  21. Fogler SH (1999) Elements of chemical reaction engineering. Prentice Hall PTR, New York

    Google Scholar 

  22. Marquardt FW (1963) J Soc Ind Appl Math 11:431

    Article  Google Scholar 

  23. Harris SD, Elliott L, Ingham DB, Pourkashanian M, Wilson CW (2000) Comput Method Appl Mech Eng 190:1065

    Article  Google Scholar 

  24. Kitagawa H (1986) J Catal 101:12

    Article  CAS  Google Scholar 

  25. Guo H, Wang X, Yang F, Zhang P, Xu Z, Wang R, Zhao L, Hu Y (2004) J Mol Catal (China) 18:109

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2004CB217807), the Natural Science Foundation of China (Grant No. 20606037 and Grant No. 20825621), and the Science and Technology New Star Plan of Beijing (Grant No. 2007B073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Yin, J., Shi, G. et al. A Six-Lump Kinetic Model for Olefin Hydrogenation, Hydroisomerization and Aromatization in FCC Gasoline Hydro-Upgrading. Catal Lett 129, 181–188 (2009). https://doi.org/10.1007/s10562-008-9788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9788-7

Keywords

Navigation