Skip to main content
Log in

The Effect of Al2O3 Doping into TiO2–ZrO2 on the Storage and Sulfur-resistance Performance of the NO x Trap Catalyst Pt/K/TiO2–ZrO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A series of lean-burn NO x trap (LNT) catalyst Pt/K/Al2O3–TiO2–ZrO2 were prepared by sequential impregnation with the support synthesized by coprecipitation. The effect of Al2O3 doping into TiO2–ZrO2 on the storage and sulfur-resistance performance of the catalyst Pt/K/TiO2–ZrO2 was investigated carefully. In situ DRIFTS spectra show that the NO x is mainly stored as nitrate at the optimal temperature of ~350 °C. The NO x storage capacity (NSC) of Pt/K/TiO2–ZrO2 was greatly improved by Al2O3 doping due to the remarkably increased specific surface area and the decreased Ti content. The results of sulfation and regeneration by H2-TPR reveal that the sulfur on Al2O3–TiO2–ZrO2 supported catalysts is easier to be removed, making them possess much better sulfur-resisting ability than TiO2–ZrO2 or Al2O3 supported ones. The NSC recovery efficiency of Al2O3–TiO2–ZrO2 supported catalysts can reach as high as 81–96% while only 30.4 and 62.5% were achieved for the catalysts supported on pure Al2O3 and TiO2–ZrO2, respectively. The doped catalyst with the Al/(Ti + Zr) atomic ratio of 3:1 always shows the highest NSC before or after sulfation-regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shinjoh H, Takahashi N, Yokota K, Sugiura M (1998) Appl Catal B 15:189

    Article  CAS  Google Scholar 

  2. Matsumoto S (2004) Catal Today 90:183

    Article  CAS  Google Scholar 

  3. Courson C, Khalfi A, Mahzoul H, Hodjati S, Moral N, Kiennemann A, Gilot P (2002) Catal Commun 3:471

    Article  CAS  Google Scholar 

  4. Engström P, Amberntsson A, Skoglundh M, Fridell E, Smedler G (1999) Appl Catal B 22:L241

    Article  Google Scholar 

  5. Takeuchi M, Matsumoto S (2004) Top Catal 28:151

    Article  CAS  Google Scholar 

  6. Matsumoto S, Ideka Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115

    Article  CAS  Google Scholar 

  7. Sedlmair C, Seshan K, Jentys A, Lercher JA (2002) Catal Today 75:413

    Article  CAS  Google Scholar 

  8. Amberntsson A, Skoglundh M, Jonsson M, Fridell E (2002) Catal Today 73:279

    Article  CAS  Google Scholar 

  9. Amberntsson A, Skoglundh M, Ljungström S, Fridell E (2003) J Catal 217:253

    CAS  Google Scholar 

  10. Yamazaki K, Suzuki T, Takahashi N, Yokota K, Sugiura M (2001) Appl Catal B 30:459

    Article  CAS  Google Scholar 

  11. Luo JY, Meng M, Zha YQ, Xie YN, Hu TD, Zhang J, Liu T (2008) Appl Catal B 78:38

    Article  CAS  Google Scholar 

  12. Liu Y, Meng M, Li XG, Guo LH, Zha YQ (2008) Chem Eng Res Des 86:932

    Article  CAS  Google Scholar 

  13. Liu Y, Meng M, Zou ZQ, Li XG, Zha YQ (2008) Catal Commun 10:173

    Article  CAS  Google Scholar 

  14. Toops TJ, Smith DB, Partridge WP (2006) Catal. Today 114:112

    Article  CAS  Google Scholar 

  15. Takahashi N, Suda A, Hachisuka I, Sugiura M, Sobukawa H, Shinjoh H (2007) Appl Catal B 72:187

    Article  CAS  Google Scholar 

  16. Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H (2007) J Catal 251:315

    Article  CAS  Google Scholar 

  17. H. Imagawa, T. Tanaka, N. Takahashi, S. Matsunaga, A. Suda, H. Shinjoh, Appl. Catal. B (2008), doi:10.1016/j.apcatb.2008.07.019

  18. Monti DAM, Baiker A (1983) J Catal 83:323

    Article  CAS  Google Scholar 

  19. Fanson PT, Horton MR, Delgass WN, Lauterbach J (2003) Appl Catal B 46:393

    Article  CAS  Google Scholar 

  20. Abdulhamid H, Fridell E, Dawody J, Skoglundh M (2006) J Catal 241:200

    Article  CAS  Google Scholar 

  21. Peralta MA, Milt VG, Cornaglia LM, Querini CA (2006) J Catal 242:118

    Article  CAS  Google Scholar 

  22. Chen JP, Yang RT (1993) J Catal 139:277

    Article  CAS  Google Scholar 

  23. Lavalley JC (1996) Catal Today 27:377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 20876110), the Program of New Century Excellent Talents in University of China (NCET-07-0599). The authors are also grateful to the “863” Programs of the Ministry of Science and Technology of China (2008AA06Z323), the Natural Science Foundation of Tianjin (No. 07JCYBJC15100) and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (No. IRT0641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, ZQ., Meng, M., Zhou, XY. et al. The Effect of Al2O3 Doping into TiO2–ZrO2 on the Storage and Sulfur-resistance Performance of the NO x Trap Catalyst Pt/K/TiO2–ZrO2 . Catal Lett 128, 475–482 (2009). https://doi.org/10.1007/s10562-008-9775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9775-z

Keywords

Navigation