Skip to main content
Log in

Dimethyl Ether as a Source of Reactive Species for Alkylation of Benzene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The co-reaction of dimethyl ether and benzene has been investigated on pure and promoted-ZSM-5 catalysts at 473–773 K. It was found that the addition of benzene to dimethyl ether markedly increased the formation of toluene, xylene and C9 aromatics on ZSM-5 at and above 623 K. This feature is attributed to the reaction of benzene with the reactive hydrocarbon species formed in the decomposition of dimethyl ether on the acidic sites of ZSM-5 zeolite. The extent of the enhancement was further increased by ZnO and Mo2C promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seddon D (1990) Catal Today 6:351

    Article  CAS  Google Scholar 

  2. Ono Y (1992) Catal Rev Sci Eng 34:179

    Article  CAS  Google Scholar 

  3. Meriaudeau P, Naccache C (1997) Catal Rev Sci Eng 39:5 and references therein

    Article  CAS  Google Scholar 

  4. Chang CD (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, pp 1894–1908

  5. Poustma MI (1976) In: Rabo JA (ed) Zeolite chemistry and catalysis, ACD Monograph 171. American Chemical Society, Washington DC, p 437

  6. Chang CD (1983) Catal Rev Sci Eng 25:1

    Article  CAS  Google Scholar 

  7. Adebajo MO, Howe RF, Long MA (2000) Catal Today 63:471

    Article  CAS  Google Scholar 

  8. Adebajo MO, Long MA (2003) Catal Commun 4:71

    Article  CAS  Google Scholar 

  9. Zaidi HA, Pant KK (2004) Catal Today 96:155

    Article  CAS  Google Scholar 

  10. Svelle S, Arstad B, Kolboe S, Swang O (2003) J Phys Chem B 107:9281 and references therein

    Article  CAS  Google Scholar 

  11. Lonyi F, Engelhardt J, Kallo D (1991) Zeolites 11:59

    Article  Google Scholar 

  12. Parikh PA, Subrahmanyam N, Bhat YS, Halgeri AB (1992) Catal Lett 14:107

    Article  CAS  Google Scholar 

  13. Parikh PA, Subrahmanyam N, Bhat YS, Halgeri AB (1992) Ind Eng Chem Res 31:1012

    Article  CAS  Google Scholar 

  14. Arstad B, Kolboe S, Swang O (2004) J Phys Chem B 108:2300

    Article  CAS  Google Scholar 

  15. Li J, Qi Y, Liu Z, Liu G, Zhang D (2008) Catal Lett 121:303

    Article  CAS  Google Scholar 

  16. Svelle S, Kolboe S, Swang O, Olsbye U (2005) J Phys Chem B 109:12874

    Article  CAS  Google Scholar 

  17. Barthos R, Bánsági T, Süli Zakar T, Solymosi F (2007) J Catal 247:368

    Article  CAS  Google Scholar 

  18. Solymosi F, Szőke A (1998) Appl Catal 166:225

    Article  CAS  Google Scholar 

  19. Solymosi F, Németh R, Óvari L, Egri L (2000) J Catal 195:316

    Article  CAS  Google Scholar 

  20. Yuan S, Derouane-Abd Hamid SB, Li Y, Ying P, Xin Q, Derouane EG, Li C (2002) J Mol Catal A Chem 184:257

    Article  CAS  Google Scholar 

  21. Solymosi F, Nemeth R, Szechenyi A (2002) Catal Lett 82:213

    Article  CAS  Google Scholar 

  22. Solymosi F, Szechenyi A (2004) J Catal 223:221

    Article  CAS  Google Scholar 

  23. Széchenyi A, Solymosi F (2006) Appl Catal A Gen 306:149

    Article  Google Scholar 

  24. Solymosi F, Barthos R (2005) Catal Lett 101:235

    Article  CAS  Google Scholar 

  25. Barthos R, Solymosi F (2005) J Catal 235:60

    Article  CAS  Google Scholar 

  26. Széchenyi A, Barthos R, Solymosi F (2006) Catal Lett 110:85

    Article  Google Scholar 

  27. Kecskeméti A, Barthos R, Solymosi F (2008) J Catal 258:111

    Article  Google Scholar 

  28. Leclercq L, Provost M, Pastor H, Grimblot J, Hardy AM, Gengembre L, Leclercq G (1989) J Catal 117:371

    Article  CAS  Google Scholar 

  29. Koós Á, Oszkó A, Solymosi F (2007) Appl Surf Sci 253:3022

    Article  Google Scholar 

  30. Óvári L, Solymosi F (2004) J Mol Catal A Chem 207:35

    Article  Google Scholar 

  31. Chen JG, Basu P, Ballinger TH, Yates JT Jr (1989) Langmuir 5:352

    Article  CAS  Google Scholar 

  32. Bebe TP Jr, Crowell JE, Yates JT Jr (1988) J Phys Chem 92:1296

    Article  Google Scholar 

  33. Chang CD, Kou JCW, Lang WH, Jackob SM, Wise JJ, Silvestri AJ (1978) Ind Eng Chem Prod Res Dcv 17:255

    Article  CAS  Google Scholar 

  34. Chang CD, Silvestri AJ (1977) J Catal 47:249

    Article  CAS  Google Scholar 

  35. Ono Y, Adachi H, Sendoda Y (1988) J Chem Soc Faraday Trans 84:1091

    Article  CAS  Google Scholar 

  36. Stöcker M (1999) Micropor Mesopor Material 40:3

    Article  Google Scholar 

  37. Olah GA, Molnár Á (2003) Hydrocarbon chemistry. Wiley-Interscience, New York

    Google Scholar 

  38. Hutchings GJ, Hunter R (1990) Catal Today 6:279

    Article  CAS  Google Scholar 

  39. Dahl IM, Kolboe S (1996) J Catal 161:304

    Article  CAS  Google Scholar 

  40. Blaszkowksi SR, van Santen RA (1997) J Am Chem Soc 119:5020

    Article  Google Scholar 

  41. Munson EJ, Kheir AA, Lazo ND, Haw JF (1992) J Phys Chem 96:7740

    Article  CAS  Google Scholar 

  42. Farkas AP, Solymosi F (2008) Surf Sci 602:1497

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant OTKA under contact number NI 69327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frigyes Solymosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Széchenyi, A., Solymosi, F. Dimethyl Ether as a Source of Reactive Species for Alkylation of Benzene. Catal Lett 127, 13–19 (2009). https://doi.org/10.1007/s10562-008-9716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9716-x

Keywords

Navigation