We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Influence of the Support Treatment on the Behavior of MnOx/Al2O3 Catalysts used in VOC Combustion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Alumina was treated with water and diluted nitric acid and then was used to prepare supported MnO x /Al2O3 catalysts with two different loadings. The influence of the support treatment on the catalytic behavior in ethanol and toluene combustion was studied. The treatments modified the alumina physicochemical properties (porosity, surface area, isoelectric point, and surface acidity). The modification of these properties affected the interaction of the manganese oxide species with the support and increased the dispersion of the active phase. Catalysts prepared from treated supports showed the best catalytic performance in ethanol combustion. At high manganese loading, this better catalytic performance was related to the high capacity for adsorbing oxygen. While at low manganese loading, the great amount of dispersed surface manganese oxide species and/or the existence of surface defects were relevant in the catalytic activity. On the other hand, the reactivity of the catalysts in toluene combustion was roughly correlated with the reducibility of the surface manganese oxide species. On the basis of these observations, we conclude that the ethanol combustion occurs by a suprafacial mechanism whereas the toluene combustion proceeds through an intrafacial mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hodnett BK (2000) Heterogeneous catalytic oxidation. Wiley, New York, p 189,285

    Google Scholar 

  2. Gandia LM, Vicente MA, Gil A (2002) Appl Catal B 38:295

    Article  CAS  Google Scholar 

  3. Merino NA, Barbero BP, Ruiz P, Cadús LE (2006) J Catal 240:245

    Article  CAS  Google Scholar 

  4. Barbero BP, Gamboa JA, Cadús LE (2006) Appl Catal B 65:21

    Article  CAS  Google Scholar 

  5. Morales MR, Barbero BP, Cadus LE (2007) Appl Catal B 74:1

    Article  CAS  Google Scholar 

  6. Gélin P, Primet M (2002) Appl Catal B 39:1

    Article  Google Scholar 

  7. Spivey JJ (1987) Ind Chem Res 26:2165

    Article  CAS  Google Scholar 

  8. Spivey JJ, Butt JB (1992) Catal Today 11:465

    Article  CAS  Google Scholar 

  9. Zwinkels MFM, Jaras SG, Menon PG, Griffin TA (1993) Catal Rev-Sci Eng 35:319

    Article  CAS  Google Scholar 

  10. Trawczynski J, Bielak B, Mista W (2005) Appl Catal B 55:277

    Article  CAS  Google Scholar 

  11. Lamaita L, Peluso MA, Sambeth JE, Thomas H, Minelli G, Porta P (2005) Catal Today 107–108:133

    Article  CAS  Google Scholar 

  12. Lamaita L, Peluso MA, Sambeth JE, Thomas H (2005) Appl Catal B 61:114

    Article  CAS  Google Scholar 

  13. Gallardo Amores JM, Armaroli T, Ramis G, Finocchio E, Busca G (1999) Appl Catal B 22:249

    Article  CAS  Google Scholar 

  14. Fernandez-Lopez E, Sanchez-Escribano V, Resini C, Gallardo Amores JM, Busca G (2001) Appl Catal B 29:251

    Article  CAS  Google Scholar 

  15. Zaki MI, Hasan MA, Pasupulety L, Kumasi K (1997) Thermochim Acta 303:171

    Article  CAS  Google Scholar 

  16. Strohmeier BR, Hercules DM (1984) J Phys Chem 88:4922

    Article  CAS  Google Scholar 

  17. Selwood PW, Moore TE, Ellis MJ (1949) J Am Chem Soc 71:693

    Article  CAS  Google Scholar 

  18. Avila P, Montes M, Miró E (2005) Chem Eng J 11:11

    Article  CAS  Google Scholar 

  19. O’Malley A, Hodnett BK (1999) Catal Today 54:349

    Google Scholar 

  20. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  21. Damyanova S, Grange P, Delmon B (1997) J Catal 168:421

    Article  CAS  Google Scholar 

  22. Gil-Llambias F, Escudey AM, Fierro JLG, Lopez Agudo A (1985) J Catal 95:520

    Article  CAS  Google Scholar 

  23. Kapteijn F, Dick van Langeveld A, Moulijn JA, Andreini A, Vuurman M, Turek AM, Jehng J, Wachs I (1994) J Catal 150:94

    Article  CAS  Google Scholar 

  24. Okamoto Y, Adachi T, Nagata K, Odawara M, Imanaka T (1992) Appl Catal A 82:199

    Article  Google Scholar 

  25. Yamazoe N, Teraoka Y, Nakamura T (1981) Chem Lett 1767

  26. Fierro JLG, Tejuca LG (1987) Appl Surf Sci 27:453

    Article  CAS  Google Scholar 

  27. Fierro JLG (1990) Catal Today 8:153

    Article  CAS  Google Scholar 

  28. Tejuca LG, Bell AT, Fierro JLG, Peña MA (1988) Appl Surf Sci 31:301

    Article  Google Scholar 

  29. Stephan K, Hackenberger M, Wendt G (1999) Catal Today 54:23

    Article  CAS  Google Scholar 

  30. Koh DJ, Chung JS, Kim YG, Lee JS, Nam IS, Moon SH (1992) J Catal 138:630

    Article  CAS  Google Scholar 

  31. Stobbe ER, de Boer BA, Geus JW (1999) Catal Today 47:161

    Article  CAS  Google Scholar 

  32. Voorhoeve RJH, Remeika JP, Freeland PE, Mattias BT (1972) Science 177:353

    Article  CAS  Google Scholar 

  33. Seiyama T, Yamazoe N, Eguchi K (1985) Ind Eng Chem Prod Res Dev 24:19

    Article  CAS  Google Scholar 

  34. Onoda GY, Casey A (1984) Ultra-structure processes of ceramics, glasses and composites. Wiley/Interscience, New York, p 374

    Google Scholar 

  35. Aguero FN, Barbero BP, Scian A, Cadús LE (2008) Catal Today 133–135:493

    Article  CAS  Google Scholar 

  36. Zhang J, Chen J, Ren J, Sun Y (2003) Appl Catal A 243:121

    Article  CAS  Google Scholar 

  37. Martin JA, Avila P, Suarez S, Yates M, Martin-Rojo AB, Barthelemy C, Martin JA (2006) Appl Catal B 67:270

    Article  CAS  Google Scholar 

  38. Patermarakis G, Papandreadis N (1993) Electrochim Acta 36:1413

    Article  Google Scholar 

  39. Kasprzyk-Hordern B (2004) Adv Interface Sci 110:19

    Article  CAS  Google Scholar 

  40. Ming H, Baker BG (1995) Appl Catal A 123:23

    Article  CAS  Google Scholar 

  41. Hu H, Wacho IE, Bare SR (1995) J Phys Chem 99:10897

    Article  CAS  Google Scholar 

  42. Radhakrishnan R, Oyama ST, Chen JG, Asakura K (2001) J Phys Chem B 105:4245

    Article  CAS  Google Scholar 

  43. Kochubeii DI, Kriventsov VV, Kustova GN, Odegova GV, Tsyrulnikov PG, Kudrja EN (1998) Kinet Katal 39:294

    Google Scholar 

  44. Voorhoeve RJH, Remeika JP, Johnson DW (1973) Science 180:62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from UNSL, CONICET and ANPCyT of Argentina is gratefully acknowledged. The authors also thank to Dr. M. Nazzarro for the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola N. Aguero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguero, F.N., Scian, A., Barbero, B.P. et al. Influence of the Support Treatment on the Behavior of MnOx/Al2O3 Catalysts used in VOC Combustion. Catal Lett 128, 268–280 (2009). https://doi.org/10.1007/s10562-008-9695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9695-y

Keywords

Navigation