Skip to main content
Log in

Palladium Nanohexagons and Nanospheres in Selective Alkyne Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Palladium nanohexagons were prepared using a seed-mediated method. Their catalytic performance in 2-methyl-3-butyn-2-ol hydrogenation was compared to the one of monodispersed Pd nanospheres. Quantitative correlations between initial turnover frequencies (TOFs) and nanoparticle surface compositions showed independence of TOFs calculated per atoms on Pd(111) facets on particle size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  2. Shchukin DG, Sukhorukov GB (2004) Adv Mater 16:671

    Article  CAS  Google Scholar 

  3. Durand J, Teuma E, Gomez M (2008) Eur J Inorg Chem 23:3577

    Article  Google Scholar 

  4. Pachon LD, Rothenberg G (2008) Appl Organomet Chem 22:288

    Article  CAS  Google Scholar 

  5. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  6. Narayanan R, El-Sayed MA (2005) Langmuir 21:2027

    Article  CAS  Google Scholar 

  7. Sasaki M, Osada M, Higashimoto N, Yamamoto T, Fukuoka A, Ichikawa M (1999) J Mol Catal A 141:223

    Article  CAS  Google Scholar 

  8. Balint I, Miyazaki A, Aika K (2004) Phys Chem Chem Phys 6:2000

    Article  CAS  Google Scholar 

  9. Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343

    Article  CAS  Google Scholar 

  10. Narayanan R, El-Sayed MA (2004) J Phys Chem B 108:5726

    Article  CAS  Google Scholar 

  11. Li Y, Boone E, El-Sayed MA (2002) Langmuir 18:4921

    Article  CAS  Google Scholar 

  12. Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) Langmuir 15:7621

    Article  Google Scholar 

  13. Semagina N, Renken A, Kiwi-Minsker L (2007) J Phys Chem C 111:13933

    Article  CAS  Google Scholar 

  14. Neri G, Musolino MG, Milone C, Pietropaolo D, Galvagno S (2001) Appl Catal A 208:307

    Article  CAS  Google Scholar 

  15. Boitiaux JP, Cosyns J, Vasudevan S (1983) Appl Catal 6:41

    Article  CAS  Google Scholar 

  16. Silvestre-Alberto J, Rupprechter G, Freund H-J (2006) J Catal 240:58

    Article  Google Scholar 

  17. Semagina N, Renken A, Laub D, Kiwi-Minsker L (2007) J Catal 246:308

    Article  CAS  Google Scholar 

  18. Silvestre-Albero J, Rupprechter G, Freund H-J (2006) Chem Commun 80

  19. Molnar A, Sarkany A, Varga M (2001) J Mol Catal A 173:185

    Article  CAS  Google Scholar 

  20. Chen B, Dingerdissen U, Krauter JGE, Rotgerink HGJL, Mobus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17

    Article  CAS  Google Scholar 

  21. Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) J Am Chem Soc 128:4510

    Article  CAS  Google Scholar 

  22. Telkar MM, Rode CV, Chaudhari RV, Joshi SS, Nalawade AN (2004) Appl Catal A 273:11

    Article  CAS  Google Scholar 

  23. Berhault G, Bisson L, Thomazeau C, Verdon C, Uzio D (2007) Appl Catal A 327:32

    Article  CAS  Google Scholar 

  24. van Hardeveld R, Hartog F (1969) Surf Sci 15:189

    Article  Google Scholar 

  25. Sau TK, Murphy C (2004) J Am Chem Soc 126:8648

    Article  CAS  Google Scholar 

  26. Kumar S, Yang H, Zou S (2007) J Phys Chem 111:12933

    CAS  Google Scholar 

  27. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) J Mater Chem 12:1765

    Article  CAS  Google Scholar 

  28. Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) J Phys Chem B 102:3316

    Article  CAS  Google Scholar 

  29. Walter J (2000) Adv Mater 12:31

    Article  CAS  Google Scholar 

  30. Walter J, Shioyama H (1999) Phys Lett A 254:65

    Article  CAS  Google Scholar 

  31. Bakshi MS, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger MC, Possmayer F, Petersen NO (2008) Cryst Growth Des 8:1713

    Article  CAS  Google Scholar 

  32. Toshima N, Shiraishi Y, Teranishi T, Miyake M, Tominaga T, Watanabe H, Brijoux W, Bönnemann H, Schmid G (2001) Appl Organometal Chem 15:178

    Article  CAS  Google Scholar 

  33. Borodzinski A (2001) Catal Lett 71:169

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank D. Laub (EPFL-CIME) for the TEM measurement, the Swiss National Science Foundation and the Commission for Technology and Innovation (CTI) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioubov Kiwi-Minsker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semagina, N., Kiwi-Minsker, L. Palladium Nanohexagons and Nanospheres in Selective Alkyne Hydrogenation. Catal Lett 127, 334–338 (2009). https://doi.org/10.1007/s10562-008-9684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9684-1

Keywords

Navigation