Skip to main content

Advertisement

Log in

High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn–Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

High-efficient production of hydrogen from bio-oil was performed by a novel electrochemical catalytic reforming method over the NiCuZn–Al2O3 catalyst. The influences of current on the hydrogen yield, carbon conversion and products’ distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching nearly complete conversion with a hydrogen yield of 93.5% even at low reforming temperature of 400 °C. The thermal electrons would play important roles in promoting the reforming reactions of the oxygenated-organic compounds in bio-oil, molecular dissociation and the catalyst reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prakash D, Vaidya , Alirio E, Rodrigues (2006) Chem Eng J 117:39

    Article  Google Scholar 

  2. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  3. Das D, Veziroglu TN (2001) Int J Hydrogen Energy 26:13

    Article  CAS  Google Scholar 

  4. Chen ZX, Yan YB, Elnashaie SSEH (2004) Chem Eng Sci 59:1965

    Article  CAS  Google Scholar 

  5. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  6. Chornet E, Czernik S (2002) Nature 418:928

    Article  CAS  Google Scholar 

  7. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  8. Li WZ, Yan YJ, Li TC, Ren ZW, Huang M, Wang J, Chen MQ, Tan ZC (2008) Energy Fuels 22:1233

    Article  CAS  Google Scholar 

  9. Nishikawa J, Nakamura K, Asadullah M, Miyazawa T, Kunimori K, Tomishige K (2008) Catal Today 131:146

    Article  CAS  Google Scholar 

  10. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  11. Corella J, Toledo JM, Molina G (2007) Ind Eng Chem Res 46:6831

    Article  CAS  Google Scholar 

  12. Czernik S, Bridgwater AV (2004) Energy Fuels 18:590

    Article  CAS  Google Scholar 

  13. Zhu XF, Zheng JL, Guo QX, Zhu QS (2006) J Environ Sci 18:392

    Article  CAS  Google Scholar 

  14. Zhu XF, Venderbosch R (2005) Fuel 84:1007

    Article  CAS  Google Scholar 

  15. Zheng JL, Zhu XF, Guo QX, Zhu QS (2006) Waste Manag 26:1430

    Article  CAS  Google Scholar 

  16. Zhu XF (2001) China Patent 00241135.0

  17. Zhu XF (2002) China Patent 01263584.7

  18. Ba T, Chaala A, Garcia-Perez M, Rodrigue D, Roy C (2004) Energy Fuels 18:704

    Article  CAS  Google Scholar 

  19. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  20. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Appl Catal B 61:130

    Article  CAS  Google Scholar 

  21. Trimm DL (1997) Catal Today 37:233

    Article  CAS  Google Scholar 

  22. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  23. Armor JN (1999) Appl Catal A 176:159

    Article  CAS  Google Scholar 

  24. Nurunnabi M, Fujimoto K, Suzuki K, Li BT, Kado S, Kunimori K, Tomishige K (2006) Catal Commun 7:73

    Article  CAS  Google Scholar 

  25. Wang D, Czernik S, Montane′ D, Mann M, Chornet E (1997) Ind Eng Chem Res 36:1507

    Article  CAS  Google Scholar 

  26. Garcia L, French R, Czernik S, Chornet E (2000) Appl Catal A 201:225

    Article  CAS  Google Scholar 

  27. Fierro V, Akdim O, Mirodatos C (2003) Green Chem 5:20

    Article  CAS  Google Scholar 

  28. Fierro V, Klouz V, Akdim O, Mirodatos C (2002) Catal Today 75:141

    Article  CAS  Google Scholar 

  29. Marino F, Boveri M, Baronetti G, Laborde M (2004) Int J Hydrogen Energy 29:67

    Article  CAS  Google Scholar 

  30. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  31. Velu S, Satoh N, Gopinath CS, Suzuki K (2002) Catal Lett 82(1–2):145

    Article  CAS  Google Scholar 

  32. Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS (2005) Appl Catal B 55:287

    Article  CAS  Google Scholar 

  33. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sour 105:26

    Article  CAS  Google Scholar 

  34. Davidian T, Guilhaume N, Iojoiu E, Provendier H, Mirodatos C (2007) Appl Catal B 73:116

    Article  CAS  Google Scholar 

  35. Czernik S, Evans R, French R (2007) Catal Today 129:265

    Article  CAS  Google Scholar 

  36. Marquevich M, Czernik S, Chornet E, Montane D (1999) Energy Fuels 13:1160

    Article  CAS  Google Scholar 

  37. Wang D, Czernik S, Chornet E (1998) Energy Fuels 12:19

    Article  Google Scholar 

  38. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Appl Catal B Environ 61:144

    Article  Google Scholar 

  39. Wang ZX, Pan Y, Dong T, Zhu XF, Kan T, Yuan LX, Torimoto Y, Sadakata M, Li QX (2007) Appl Catal A 320:24

    Article  CAS  Google Scholar 

  40. Wang ZX, Dong T, Yuan LX, Kan T, Zhu XF, Torimoto Y, Sadakata M, Li QX (2007) Energy Fuels 21:2421

    Article  CAS  Google Scholar 

  41. Li QX, Yuan LX, Chen YQ, Kan T, Qiu SB, Sadakata M (2008) China Patent 101177239A

  42. Dong T, Wang ZX, Yuan LX, Torimoto Y, Sadakata M, Li QX (2007) Catal Lett 119:29

    Article  CAS  Google Scholar 

  43. Fatsikostas AN, Kondarides DI, Verykios XE (2001) Chem Commun 851

  44. Goula MA, Kontou SK, Tsiakaras PE (2004) Appl Catal B 49:135

    Article  CAS  Google Scholar 

  45. Torres JA, Llorca J, Casanovas A, Domınguez M, Salvado J, Montane D (2007) J Power Sour 169:158

    Article  CAS  Google Scholar 

  46. Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA (2006) Energy Fuels 20:2155

    Article  CAS  Google Scholar 

  47. Jacobs G, Keogh RA, Davis BH (2007) J Catal 245:326

    Article  CAS  Google Scholar 

  48. Basagiannis AC, Verykios XE (2007) Int J Hydrogen Energy 32:3343

    Article  CAS  Google Scholar 

  49. Galdamez JR, Garcia L, Bilbao R (2005) Energy Fuels 19:1133

    Article  CAS  Google Scholar 

  50. Takanabe K, Aika K, Seshan K, Lefferts L (2004) J Catal 227:101

    Article  CAS  Google Scholar 

  51. Takanabe K, Aika K, Inazu K, Baba T, Seshan K, Lefferts L (2006) J Catal 243:263

    Article  CAS  Google Scholar 

  52. Takanabe K, Aika K, Seshan K, Lefferts L (2006) Chem Eng J 120:133

    Article  CAS  Google Scholar 

  53. Basagiannis AC, Verykios XE (2007) Catal Today 127:256

    Article  CAS  Google Scholar 

  54. Bimbela F, Oliva M, Ruiz J, Garcia L, Arauzo J (2007) J Anal Appl Pyrolysis 79:112

    Article  CAS  Google Scholar 

  55. Davidian T, Guilhaume N, Daniel C, Mirodatos C (2008) Appl Catal A 335:64

    Article  CAS  Google Scholar 

  56. Vagia EC, Lemonidou AA (2007) Int J Hydrogen Energy 32:212

    Article  CAS  Google Scholar 

  57. Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA (2007) Catal Today 127:246

    Article  CAS  Google Scholar 

  58. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345

    Article  CAS  Google Scholar 

  59. Aupretre F, Descorme C, Duprez D (2002) Catal Commun 3:263

    Article  CAS  Google Scholar 

  60. Kugai J, Velu S, Song C (2005) Catal Lett 101:255

    Article  CAS  Google Scholar 

  61. Domine ME, Iojoiu EE, Davidian T, Guilhaume N, Mirodatos C (2008) Catal Today 133–135:565

    Article  Google Scholar 

  62. Huang F, Li J, Wang L, Dong T, Tu J, Torimoto Y, Sadakata M, Li QX (2005) J Phys Chem B 109:12032

    Article  CAS  Google Scholar 

  63. Li J, Huang F, Wang L, Wang ZX, Yu SQ, Torimoto Y, Sadakata M, Li QX (2005) J Phys Chem B 109:14599

    Article  CAS  Google Scholar 

  64. Li QX, Hosono H, Hirano M, Hayashi K, Nishioka M, Kashiwagi H, Torimoto Y, Sadakata M (2003) Surf Sci 527:100

    Article  CAS  Google Scholar 

  65. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Appl Catal A 246:323

    Article  CAS  Google Scholar 

  66. Ricoult MB (2008) Sol Stat Sci 10:670

    Article  Google Scholar 

  67. Tsipis EV, Kharton VV (2008) J Sol Stat Electrochem 12:1367

    Article  CAS  Google Scholar 

  68. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley-Interscience, New York

    Google Scholar 

  69. Shiozawa K, Neo Y, Okada M, Matsumoto T, Takahashi M, Hashiguchi G, Mimura H (2007) J Vac Sci Technol B 25:666

    Article  CAS  Google Scholar 

  70. Singleton JH (2001) J Vac Sci Technol A 19:1712

    Article  CAS  Google Scholar 

  71. Christov SG (1966) Phys Stat Sol 17:11

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of the “National Basic Research Program” (973 Program No. 2007CB210206) of Ministry of Science and Technology of China, the “National High Tech Research and Development Program” (863 Program No. 2006AA05Z118) and the General Program of the National Natural Science Foundation of China (No. 50772107) and Demonstration and Applied Investigation of Biomass Clean Energy Base (No. 2007-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanxin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, T., Yuan, L., Chen, Y. et al. High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn–Al2O3 Catalyst. Catal Lett 127, 323–333 (2009). https://doi.org/10.1007/s10562-008-9683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9683-2

Keywords

Navigation