Skip to main content
Log in

Effect of TiO2–Al2O3 Sol–Gel Supports on the Superficial Ni and Mo Species in Oxidized and Sulfided NiMo/TiO2–Al2O3 Catalysts: Influence on Dibenzothiophene Hydrodesulfurization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present work presents a comparative study of NiMo catalysts supported on sol–gel TiO2–Al2O3 mixed oxides with 5 and 95 mol% content of Al2O3. The DRX and N2 physisorption results showed that the sol–gel method allows preparation of TiO2–Al2O3 mixed oxides possessing high superficial area and an amorphous TiO2 structure. Results of ζ-potential showed that the net surface pH of the supports depends on their structure and composition. According to UV–Vis and Raman spectra obtained from the solids after impregnation, catalysts with high content of Al2O3 showed Mo7O24 2− and Mo8O26 4− species displaying Mo–O–Mo stretching vibration modes. On the other hand, catalysts with high content of TiO2 showed Mo7O24 2− and Mo8O26 4− species with vibration modes corresponding to terminal Mo=Ot bonds. Therefore, it appears that impregnation of catalysts with a pH 9 solution allows a polymerization process of MoO4 2− and [Ni2+4O2−] solution species to Mo8O26 4− and Mo7O24 2− species with a close interaction with [Ni2+6O2−] species. However, these species have low interaction with the support. Thus, composition of the support appears to be more important than net surface pH in order to obtain a better distribution of superficial Mo species. XPS results suggest a higher proportion of “NiMoS” phase on the TiO2 rich support. The most active catalyst in the dibenzothiophene hydrodesulfurization was NiMo/TiO2–Al2O3 with 5 mol% Al2O3. This suggests that Mo7O24 2− and Mo8O26 4− in combination with [Ni2+6O2−] species produce a better Ni/(Ni + Mo) ratio and NiMoS phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Macaud M, Milenkovic A, Schulz E, Lemaire M, Vrinat M (2000) J Catal 193:255–263

    Article  CAS  Google Scholar 

  2. Meille V, Schulz E, Vrinat M (1999) Appl Catal A: Gen 187:179–186

    Article  CAS  Google Scholar 

  3. Topsøe H, Clasusen BS, Massot FE (1996) Hydrotreating catalysis: science and technology. Springer, Berlin

    Google Scholar 

  4. Topsøe H, Clausen BS, Topsøe N-Y, Zeuthen P (1990) Stud Surf Sci Catal 53:77

    Article  Google Scholar 

  5. Hensen EJM, de Beer VJH, van Veen JAR, van Santen RA (2002) Catal Lett 84:59–67

    Article  CAS  Google Scholar 

  6. Coulier L, van Veen JAR, Niemantsverdriet JW (2002) Catal Lett 79:149–155

    Article  CAS  Google Scholar 

  7. Araki Y, Honna K, Shimada H (2002) J Catal 207:361–370

    Article  CAS  Google Scholar 

  8. Shimada H (2003) Catal Today 86:17–29

    Article  CAS  Google Scholar 

  9. Sakashita Y (2001) Surf Sci 489:45–58

    Article  CAS  Google Scholar 

  10. Van Veen JAR, Hendriks PAJM (1986) Polyhedron 5:75–78

    Article  Google Scholar 

  11. Ramirez J, Fuentes S, Diaz G, Vrinat M, Breysse M, Lacroix M (1989) Appl Catal 52:211–224

    CAS  Google Scholar 

  12. McVicker JB, Ziemiak JJ (1985) J Catal 95:473–481

    Article  CAS  Google Scholar 

  13. Foger K, Anderson JR (1986) Appl Catal A: Gen 23:139–155

    Article  CAS  Google Scholar 

  14. Stranick A, Houalla M, Hercules DM (1990) J Catal 125:214–226

    Article  CAS  Google Scholar 

  15. Wei ZB, Xin Q, Guo XX (1992) Catal Lett 15:255–261

    Article  CAS  Google Scholar 

  16. Ramirez J, Ruiz-Ramirez L, Cedeno L, Harle V, Vrinat M, Breysse M (1993) Appl Catal A: Gen 93:163–180

    Article  CAS  Google Scholar 

  17. International Centre for Diffraction Data (1993) Mineral power diffraction file: JCPDS. Pennsylvania, USA

  18. Rohrer GS (2004) Structure and bonding in crystalline materials. Academic Press, Cambridge, pp 123–125

    Google Scholar 

  19. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. In: Ottewill RH, Rowell RL (eds) Colloid science series. Academic, London

    Google Scholar 

  20. Parks AG (1965) Chem Rev 65:177–195

    Article  CAS  Google Scholar 

  21. Spevac PA, McIntyre NS (1993) J Phys Chem 97:11020–11030

    Article  Google Scholar 

  22. Kim DS, Segawa K, Soeya T, Wachs IE (1992) J Catal 136:539–553

    Article  CAS  Google Scholar 

  23. Hu H, Bare SR, Wachs IE (1995) J Phys Chem 99:10897–10910

    Article  CAS  Google Scholar 

  24. Deo G, Wachs IE (1991) J Phys Chem 95:5889–5895

    Article  CAS  Google Scholar 

  25. Kasztelan S, Payen E, Toulhoat H, Grimblot J, Bonnelle JP (1986) Polyhedron 5:157–167

    Article  CAS  Google Scholar 

  26. Blanchard P, Lamonier C, Griboval A, Payen E (2007) Appl Catal A: Gen 322:33–45

    Article  CAS  Google Scholar 

  27. Lever AB (1984) Inorganic electronic spectroscopy, 2nd edn. In: Studies in physical theoretical chemistry, vol 33. Elsevier, Amsterdam, pp 507–711

  28. Jacono ML, Sachiavello M, Cimino A (1971) J Phys Chem 75:1044–1050

    Article  Google Scholar 

  29. Iova F, Trutia A (2000) Opt Mater 13:455–458

    Article  CAS  Google Scholar 

  30. Lepetit C, Che M (1996) J Phys Chem 100:3137–3143

    Article  CAS  Google Scholar 

  31. Guevara-Lara A, Bacaud R, Vrinat M (2007) Appl Catal A: Gen 328:99–108

    Article  CAS  Google Scholar 

  32. Li CP, Hercules DM (1984) J Phys Chem 88:456

    Article  CAS  Google Scholar 

  33. Houssenbay S, Kasztelan S, Toulhoat H, Bonnelle JP, Grimblot J (1989) J Phys Chem 93:7176–7180

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Scientific Cooperation Program CONACYT(Mexico)–CNRS(France) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guevara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guevara, A., Alvarez, A. & Vrinat, M. Effect of TiO2–Al2O3 Sol–Gel Supports on the Superficial Ni and Mo Species in Oxidized and Sulfided NiMo/TiO2–Al2O3 Catalysts: Influence on Dibenzothiophene Hydrodesulfurization. Catal Lett 126, 268–274 (2008). https://doi.org/10.1007/s10562-008-9623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9623-1

Keywords

Navigation