Skip to main content
Log in

Manganese(II)-Induced Oxidation of Limonene by Dioxygen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Manganese(II) complexes {[MnII(bpy)2 2+]MeCN} in acetonitrile activate dioxygen for the oxidation of limonene to produce mainly carvone, carveol, limonene oxide, and perillaldehyde. The reaction efficiencies after 24 h reaction time are approximately 5-times higher than those obtained for analogous iron(II) complexes. However, the 5 h long induction period is observed for the common conditions of the reaction. The simultaneous presence of the catalyst, dioxygen and the substrate is necessary for the active species to be formed. When t-BuOOH is present in the reaction mixture, the induction period does not appear. In contrast, the replacement of t-BuOOH by HOOH completely inhibits the reaction. We have proposed a putative mechanism in which a manganese(IV)–hydroperoxo adduct with incorporated substrate is formed during the induction period and it becomes an active catalyst for limonene oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Fahlbusch KG, Hammerschmidt FJ, Panten J, Pickenhagen W, Schatkowski D (2002) Flavors and fragrances. In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  2. Naróg D, Szczepanik A, Sobkowiak A (2008) Catal Lett 120:320

    Article  Google Scholar 

  3. Groves JT, Nemo TE (1983) J Am Chem Soc 105:5786

    Article  CAS  Google Scholar 

  4. De Carvalho ME, Meunier B (1986) New J Chem 10:223

    Google Scholar 

  5. (a) Suslick KS, Cook BR (1987) Chem Commun 200. (b) Van der Made AW, Nolte RJM (1984) J Mol Catal 26:333

  6. Battioni P, Renaud JP, Bartoli JF, Reina-Artiles M, Fort M, Mansuy D (1988) J Am Chem Soc 110:8462

    Article  CAS  Google Scholar 

  7. Mansuy D, Bartoli JF, Battioni P, Lyon DK, Finke RG (1991) J Am Chem Soc 113:7222

    Article  CAS  Google Scholar 

  8. Borocci S, Marotti F, Mancini G, Monti D, Pastorini A (2001) Langmuir 17:7198

    Article  CAS  Google Scholar 

  9. Moghadam M, Tangestaninejad S, Habibi MH, Mirkhani V (2004) J Mol Catal A: Chem 217:9

    Article  CAS  Google Scholar 

  10. Lima LF, Cardozo-Filho L, Arroyo PA, Márquez-Alvarez H, Antunes OAC (2005) React Kinet Catal Lett 84:69

    Article  CAS  Google Scholar 

  11. Ravikumar KS, Barbier F, Bégué JP, Bonnet-Delpon D (1998) Tetrahedron 54:7457

    Article  CAS  Google Scholar 

  12. Raja R, Sankar G, Thomas JM (1999) Chem Commun 829

  13. Bhattacharjee S, Dines TJ, Anderson JA (2004) J Catal 225:398

    Article  CAS  Google Scholar 

  14. Bhattacharjee S, Anderson JA (2004) Catal Lett 95:119

    Article  CAS  Google Scholar 

  15. Matsushita T, Sawyer DT, Sobkowiak A (1999) J Mol Catal A: Chem 137:127

    Article  CAS  Google Scholar 

  16. Lima LF, Corraza ML, Cardozo-Filho L, Márquez-Alvarez H, Antunes OAC (2006) Braz J Chem Eng 23:83

    Article  CAS  Google Scholar 

  17. Sobkowiak A, Naróg D, Sawyer DT (2000) J Mol Catal A: Chem 159:247

    Article  CAS  Google Scholar 

  18. Pacześniak T, Sobkowiak A (2003) J Mol Catal A: Chem 194:1

    Article  Google Scholar 

  19. Pacześniak T, Sobkowiak A (2004) Pol J Chem 78:1611

    Google Scholar 

  20. Naróg D, Lechowicz U, Pietryga T, Sobkowiak A (2004) J Mol Catal A: Chem 212:25

    Article  Google Scholar 

  21. Sawyer DT, Sobkowiak A, Roberts JL Jr (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York, p 189

    Google Scholar 

  22. Sawyer DT (1991) Oxygen chemistry. Oxford University Press, New York, p 44

    Google Scholar 

  23. Bakul DC, Czernuszewicz RS (1994) New J Chem 18:149

    Google Scholar 

  24. Shul’pin GB, Nizova GV, Kozlov YN, Pechenkina IG (2002) New J Chem 26:1238

    Article  CAS  Google Scholar 

  25. Woitiski CB, Kozlov YN, Mandelli D, Nizova GV, Schuchardt U, Shul’pin GB (2004) J Mol Catal A: Chem 222:103

    CAS  Google Scholar 

  26. Yin G, Buchalova M, Danby AM, Perkins CM, Kitko D, Carter JD, Scheper WM, Busch DH (2005) J Am Chem Soc 127:17170

    Article  CAS  Google Scholar 

  27. Romakh VB, Therrien B, Süss-Fink G, Shul’pin GB (2007) Inorg Chem 46:1315

    Article  CAS  Google Scholar 

  28. Liebeskind LS, Gasdaska JR, McCallum JS, Tremont SJ (1989) J Org Chem 54:669

    Article  CAS  Google Scholar 

  29. Grigsby WJ, Main L, Nicholson BK (1993) Organometallics 12:397

    Article  CAS  Google Scholar 

  30. Sawyer DT, Sobkowiak A, Matsushita T (1996) Acc Chem Res 29:409

    Article  CAS  Google Scholar 

  31. Copper SR, Calvin M (1977) J Am Chem Soc 99:6623

    Article  Google Scholar 

  32. Gamelin DR, Kirk ML, Stemmler TL, Pal S, Armstrong WH, Penner-Hahn JE, Solomon EI (1994) J Am Chem Soc 116:2392

    Article  CAS  Google Scholar 

  33. Collomb Dunand-Sauthier MN, Deronizer A, Piron A, Pradon X, Ménage S (1998) J Am Chem Soc 120:5373

    Article  Google Scholar 

  34. Baffert C, Dumas S, Chauvin J, Lepretre JC, Collomb MN, Deronizer A (2005) Phys Chem Chem Phys 7:202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Sobkowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczepanik, A., Sobkowiak, A. Manganese(II)-Induced Oxidation of Limonene by Dioxygen. Catal Lett 126, 261–267 (2008). https://doi.org/10.1007/s10562-008-9617-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9617-z

Keywords

Navigation