Skip to main content
Log in

Silica–Titania mixed Oxides: Si–O–Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of SiO2–TiO2 mixed oxides was prepared by the sol–gel route, and the influence of several important preparation parameters (Ti precursors, content, and calcination temperature) on the Si–O–Ti connectivity, coordination of titanium and surface acidity has been studied using various analytical techniques. The solids obtained were largely amorphous and characterized by Ti enrichment on surfaces with low titanium content; however, the addition of titanium greater than 50 mol% into the SiO2 matrix led to significant phase separation of crystalline anatase. The Ti atoms are tetrahedrally coordinated with Si/Ti ratios higher than 10 and gradually enter into octahedral positions in the silica matrix with further increase in the titanium content. High-temperature treatment can break Si–O–Ti linkages and eliminate hydroxyl groups, resulting in a decrease in acid site density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao X, Wachs IE (1999) Catal Today 51:233

    Article  CAS  Google Scholar 

  2. Pabón E, Retuert J, Quijada R, Zarate A (2004) Microporous Mesoporous Mater 67:195

    Article  Google Scholar 

  3. Davis RJ, Liu Z (1997) Chem Mater 9:2311

    Article  CAS  Google Scholar 

  4. Dutoit DCM, Schneider M, Hutter R, Baiker A (1996) J Catal 161:651

    Article  CAS  Google Scholar 

  5. Wallidge GW, Anderson R, Mountjoy G, Pickup DM, Gunawidjaja P, Newport RJ, Smith ME (2004) J Mater Sci 39:6743

    Article  CAS  Google Scholar 

  6. Grunwaldt JD, Beck C, Stark W, Hagen A, Baiker A (2002) Phys Chem Chem Phys 4:3514

    Article  CAS  Google Scholar 

  7. Klein S, Weckhuysen BM, Martens JA, Maier WF, Jacobs PA (1996) J Catal 163:489

    Article  CAS  Google Scholar 

  8. Walters JK, Rigden JS, Dirken PJ, Smith ME, Howells WS, Newport RJ (1997) Chem Phys Lett 264:539

    Article  CAS  Google Scholar 

  9. Moretti G, Salvi AM, Guascito MR, Langerame F (2004) Surf Interf Anal 36:1402

    Article  CAS  Google Scholar 

  10. Jung M (2001) Int J Inorg Mater 3:471

    Article  CAS  Google Scholar 

  11. Kanai H, Shono M, Hamada K, Imamura S (2001) J Mole Catal A 172:25

    Article  CAS  Google Scholar 

  12. Li C (2003) J Catal 216:203

    Article  CAS  Google Scholar 

  13. Dutoit DCM, Göbel U, Schneider M, Baiker A (1996) J Catal 164:433

    Article  CAS  Google Scholar 

  14. Hutter R, Mallat T, Peterhans A, Baiker A (1999) J Mole Catal A 138:241

    Article  CAS  Google Scholar 

  15. Contescu C, Popa VT, Miller JB, Ko EI, Schwarz JA (1995) J Catal 157:244

    Article  CAS  Google Scholar 

  16. Wang SP, Ma XB, Guo HL, Gong JL, Yang X, Xu GH (2004) J Mole Catal A 214:273

    Article  CAS  Google Scholar 

  17. Samantaray SK, Parida K (2001) Appl Catal A 220:9

    Article  CAS  Google Scholar 

  18. Samantaray SK, Parida K (2005) Appl Catal B 57:83

    Article  CAS  Google Scholar 

  19. Jung SM, Dupont O, Grange P (2001) Appl Catal A 208:393

    Article  CAS  Google Scholar 

  20. López T, Bosch P, Tzompantzi F, Gómez R, Navarrete J, lópez-Salinas E, Llanos ME (2000) Appl Catal A 197:107

    Article  Google Scholar 

  21. Doolin PK, Alerasool S, Zalewski DJ, Hoffman JF (1994) Catal Lett 25:209

    Article  CAS  Google Scholar 

  22. Millini R, Massara EP, Perego G, Bellussi G (1992) J Catal 137:497

    Article  CAS  Google Scholar 

  23. Bonelli B, Cozzolino M, Tesser R, Serio MD, Piumetti M, Garrone E, Santacesaria E (2007) J Catal 246:293

    Article  CAS  Google Scholar 

  24. Beck C, Mallat T, Bürgi T, Baiker A (2001) J Catal 204:428

    Article  CAS  Google Scholar 

  25. Serrano DP, Uguina MA, Ovejero G, Grieken VR, Camacho M (1996) Microporous Mater 7:309

    Article  CAS  Google Scholar 

  26. Sing KSW, Rouquerol J (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 2. Wiley-VCH, Weinheim, p 431

    Google Scholar 

  27. Song CF, Lü MK, Yang P, Xu D, Yuan DR (2002) Thin Solid Films 413:155

    Article  CAS  Google Scholar 

  28. Shao PL, Mauritz KA, Moore RB (1995) Chem Mater 7:192

    Article  CAS  Google Scholar 

  29. Müller CA, Maciejewski M, Mallat T, Baiker A (1999) J Catal 184:280

    Article  Google Scholar 

  30. Uguina MA, Serrano DP, Ovejero G, Grieken VR, Camacho M (1995) Appl Catal A 124:391

    Article  CAS  Google Scholar 

  31. Lee BS, Kang DJ, Kim SG (2003) J Mater Sci 38:3545

    Article  CAS  Google Scholar 

  32. Samantaray SK, Parida K (2001) Appl Catal A 211:175

    Article  CAS  Google Scholar 

  33. Izutsu H, Nair PK, Maeda K, Kiyozumi Y, Mizukami F (1997) Mater Res Bull 32:1303

    Article  CAS  Google Scholar 

  34. Jiang X, Wang T, Wang YW (2004) Colloids Surf A 234:9

    Article  CAS  Google Scholar 

  35. Yang J, Ferreira JMF, Weng WJ, Tang Y (1997) J Colloid Interf Sci 195:59

    Article  CAS  Google Scholar 

  36. Samantaray SK, Parida K (2003) React Kinet Catal Lett 78:381

    Article  CAS  Google Scholar 

  37. Ding Z, Zhu HY, Greenfield PF, Lu GQ (2001) J Colloid Interf Sci 238:267

    Article  CAS  Google Scholar 

  38. Xie C, Xu ZL, Yang QJ, Xue BY, Du YG, Zhang JH (2004) Mater Sci Eng B 112:34

    Article  Google Scholar 

  39. Garbassi F, Balducci L (2001) Microporous Mesoporous Mater 47:51

    Article  CAS  Google Scholar 

  40. Rajagopal S, Marzari JA, Miranda R (1995) J Catal 151:192

    Article  CAS  Google Scholar 

  41. Rahman A, Lemay G, Adnot A, Kaliaguine S (1988) J Catal 112:453

    Article  CAS  Google Scholar 

  42. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases: their catalytic properties. Kodansha-Elsevier, Tokyo, p 185

    Google Scholar 

  43. Nakabayashi H, Kakuta N, Ueno A (1991) Bull Chem Soc Jpn 64:2428

    Article  CAS  Google Scholar 

  44. Kataoka T, Dumesic JA (1988) J Catal 112:66

    Article  CAS  Google Scholar 

  45. Gorte RJ (1999) Catal Lett 62:1

    Article  CAS  Google Scholar 

  46. Nur H (2006) Mater Sci Eng B 133:49

    Article  CAS  Google Scholar 

  47. Mul G, Zwijnenburg A, Linden BVD, Makkee M, Moulijn JA (2001) J Catal 201:128

    Article  CAS  Google Scholar 

  48. Kim WB, Lee JS (1999) J Catal 185:307

    Article  CAS  Google Scholar 

  49. Rigden JS, Walters JK, Dirken PJ, Smith ME, Bushnell-Wye G, Howells WS, Newport RJ (1997) J Phys: Condens Matter 9:4001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Basic Research Program of China (2005CB221204) and the National Natural Science Foundation of China (20606022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Li, Z., Liu, S. et al. Silica–Titania mixed Oxides: Si–O–Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties. Catal Lett 124, 185–194 (2008). https://doi.org/10.1007/s10562-008-9500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9500-y

Keywords

Navigation