Skip to main content
Log in

Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two series of Cu–Ce–O and Cu–Co–Ce–O catalysts were prepared by co-precipitation method. The prepared catalysts were characterized by XRD, IR, TPR, XPS, BET and ICP-AES. The catalytic activities of the catalysts for low-temperature CO oxidation were evaluated through a microreactor-GC system. TPR results indicate that the addition of cobalt to the Cu–Ce–O can increase the dispersion of copper oxide, and the interaction between cobalt and copper can enhance the reducibility of each other. XPS analysis show that Ce4+, Cu2+, along with Co3O4, are present on the surface of Cu0.4Co0.6Ce4 catalyst. The Co/Cu atomic ratio and the calcination temperature have significant effect on the activities of the catalysts. Compared with Cu1Ce4 catalyst, the Cu0.4Co0.6Ce4 catalyst has better activity and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang CW, Kuo CC, Kuo MC, Wang CB, Chien SH (2006) Appl Catal A 309:37

    Article  CAS  Google Scholar 

  2. Zheng XC, Zhang XL, Wang XY, Wang SR, Wu SH (2005) Appl Catal A 295:142

    Article  CAS  Google Scholar 

  3. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52

    Article  CAS  Google Scholar 

  4. Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T (2007) Catal Commun 8:101–106

    Article  CAS  Google Scholar 

  5. Shapovalov V, Metiu H (2007) J Catal 245:205

    Article  CAS  Google Scholar 

  6. Sundar RS, Deevi S (2006) J Nanopart Res 8:497

    Article  CAS  Google Scholar 

  7. Cao JL, Wang Y, Yu XL, Wang SR, Wu SH, Yuan ZY (2007) Appl Catal B 79:26

    Article  Google Scholar 

  8. Kang M, Song MW, Lee CH (2003) Appl Catal A 251:143

    Article  CAS  Google Scholar 

  9. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Chem Mater 12:3715

    Article  CAS  Google Scholar 

  10. Tada M, Bal R, Mu XD, Coquet R, Namba S, Iwasawa Y (2007) Chem Commun 4689

  11. Zheng XC, Wang SP, Wang XY, Wang SR, Wang XY, Wu SH (2005) Matter Lett 59:2769

    Article  CAS  Google Scholar 

  12. Zheng XC, Wu SH, Wang SP, Wang SR, Zhang SM, Huang WP (2005) Appl Catal A 283:217

    Article  CAS  Google Scholar 

  13. Wang SP, Wang XY, Huang J, Zhang SM, Wang SR, Wu SH (2007) Catal Commun 8:231

    Article  CAS  Google Scholar 

  14. Sirichalprasert K, Luengnaruemitchai A, Pongstabodee S (2007) Int J Hydrogen Energy 32:915

    Article  Google Scholar 

  15. Chen YZ, Liaw BJ, Huang CW (2006) Appl Catal A 302:168

    Article  CAS  Google Scholar 

  16. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387

    CAS  Google Scholar 

  17. Thormählen P, Skoglundh M, Fridell E, Andersson B (1999) J Catal 188:300

    Article  Google Scholar 

  18. Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B 46:473

    Article  CAS  Google Scholar 

  19. Mergeler YJ, van Aalst A, van Delft J, Nieuwenhuys BE (1996) Appl Catal B 10:245

    Article  Google Scholar 

  20. Qian K, Huang WX, Jiang ZQ, Sun HX (2007) J Catal 248:137

    Article  CAS  Google Scholar 

  21. Luo JY, Meng M, Qian Y, Zou ZQ, Xie YN, Hu TD, Liu T, Zhang J (2007) Catal Lett 116:50

    Article  CAS  Google Scholar 

  22. Natile MM, Glisenti A (2005) Chem Mater 17:3403

    Article  CAS  Google Scholar 

  23. Christoskova StG, Stoyanova M, Georgieva M, Mehandjiev D (1999) Mater Chem Phys 60:39

    Article  CAS  Google Scholar 

  24. Singh RN, Pandey JP, Singh NK, Lal B, Chartier P, Koenig JF (2000) Electrochim Acta 45:1911

    Article  CAS  Google Scholar 

  25. Tang CW, Yu WY, Wang CB, Chien SH (2007) Catal Lett 116:161

    Article  CAS  Google Scholar 

  26. Yao HC, Yao YFY (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  27. Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155

    Article  CAS  Google Scholar 

  28. Liu W, Flytzani-Stephanopoulos M (1996) Chem Eng J 64:283

    CAS  Google Scholar 

  29. Vob M, Borgmann D, Wedler G (2002) J Catal 212:10

    Article  Google Scholar 

  30. Nelson AE, Schulz KH (2003) Appl Surf Sci 210:206

    Article  CAS  Google Scholar 

  31. Zhang YW, Si R, Liao CS, Yan CH, Xiao CX, Kou Y (2003) J Phys Chem B 107:10159

    Article  CAS  Google Scholar 

  32. Cao JL, Wang Y, Zhang TY, Wu SH, Yuan ZY (2007) Appl Catal B 78:120

    Article  Google Scholar 

  33. Vepřek S, Cocke DL, Kehl S, Oswald HR (1986) J Catal 100:250

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 20771061) and 973 program (2005CB623607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Wang, S., Zhang, T. et al. Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts. Catal Lett 124, 405–412 (2008). https://doi.org/10.1007/s10562-008-9493-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9493-6

Keywords

Navigation