Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts

Abstract

The organic polymer chitosan was used as the polymeric precursor for the synthesis of Ni/CeO2 nanocomposite catalysts. The materials were characterized by N2 physisorption, H2 chemisorption, AA, XRD, TGA, TPR, SEM and TEM analyses. The catalysts provide very good reactivity in ethanol steam reforming compared to the conventional Ni/CeO2 catalyst prepared by the impregnation method using a commercial support. High hydrogen selectivity (>75%) was obtained on Ni/CeO2 catalysts by operating at a temperature range of 325–500 °C and a H2O/C2H5OH molar ratio of 3. It was verified that the catalytic behavior could be influenced depending on the experimental conditions employed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Armor JN (2005) Catal Lett 101:131

    Article  CAS  Google Scholar 

  2. 2.

    Brown LF (2001) Int J Hydrogen Energy 26:381

    Article  CAS  Google Scholar 

  3. 3.

    Joensen F, Rostrup-Nielsen JR (2002) J Power Sources 105:195

    Article  CAS  Google Scholar 

  4. 4.

    Rostrup-Nielsen JR, Rostrup-Nielsen T (2002) CATTECH 6:150

    Article  CAS  Google Scholar 

  5. 5.

    Demibras A (2007) Progress Energy Combus Sci 33:1

    Article  Google Scholar 

  6. 6.

    Idriss H (2004) Platinum Metals Rev 48:105

    Article  CAS  Google Scholar 

  7. 7.

    Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  8. 8.

    Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy & Fuels 19:2098

    Article  CAS  Google Scholar 

  9. 9.

    Manzini F (2006) Int J Hydrogen Energy 31:327

    Article  CAS  Google Scholar 

  10. 10.

    Garcia EY, Laborde MA (1991) Int J Hydrogen Energy 16:307

    Article  CAS  Google Scholar 

  11. 11.

    Cavallaro S, Freni S (1996) Int J Hydrogen Energy 21:465

    Article  CAS  Google Scholar 

  12. 12.

    Vasudeva K, Mitra N, Umasankar P, Dhingra SC (1996) Int J Hydrogen Energy 21:13

    Article  CAS  Google Scholar 

  13. 13.

    Fishtik I, Alexander A, Datta R, Geana D (2000) Int J Hydrogen Energy 25:31

    Article  CAS  Google Scholar 

  14. 14.

    Mas V, Kipreos R, Amadeo N, Laborde M (2006) Int J Hydrogen Energy 31:21

    Article  CAS  Google Scholar 

  15. 15.

    Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Catal Commun 7:367

    Article  CAS  Google Scholar 

  16. 16.

    Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Shen WJ, Imamura S (2005) Appl Catal A 279:273

    Article  CAS  Google Scholar 

  17. 17.

    Roh HS, Wang Y, King DL, Platon A, Chin YH (2006) Catal Lett 108:15

    Article  CAS  Google Scholar 

  18. 18.

    Kugai J, Velu S, Song C (2005) Catal Lett 101:255

    Article  CAS  Google Scholar 

  19. 19.

    Laosiripojana N, Sutthisripok W, Assabumrungrat S (2007) Chem Eng J 127:31

    Article  CAS  Google Scholar 

  20. 20.

    Laosiripojana N, Assabumrungrat S (2006) Appl Catal B: Environ 66:29

    Article  CAS  Google Scholar 

  21. 21.

    Chary KVR, Rao PVR, Vishwanathan V (2006) Catal Commun 7:974

    Article  CAS  Google Scholar 

  22. 22.

    Li Y, Zhang B, Tang X, Xu Y, Shen W (2006) Catal Commun 7:380

    Article  CAS  Google Scholar 

  23. 23.

    Valentini A, Probst LFD, Carreño NLV, Leite ER, Pontes FM, Longo E, Schreiner WH, Lisboa-Filho PN (2003) Quim Nova 26:648

    CAS  Google Scholar 

  24. 24.

    Valentini A, Carreño NLV, Probst LFD, Barison A, Ferreira AG, Leite ER, Longo E (2006) Appl Catal A 310:174

    Article  CAS  Google Scholar 

  25. 25.

    Xu S, Yan X, Wang X (2006) Fuel 85:2243

    Article  CAS  Google Scholar 

  26. 26.

    Fajardie F, Tempere JF, Manoli JM, Djega-Mariadassou G (1998) J Chem Soc Faraday Trans 94:3727

    Article  CAS  Google Scholar 

  27. 27.

    Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964

    Article  CAS  Google Scholar 

  28. 28.

    Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Omil JAP, Pintado JM (2003) Catal Today 77:385

    Article  CAS  Google Scholar 

  29. 29.

    Yee A, Morrison SJ, Idriss H (2000) J Catal 191:30

    Article  CAS  Google Scholar 

  30. 30.

    Sheng PY, Bowmaker GA, Idriss H (2004) Appl Catal A 261:171

    Article  CAS  Google Scholar 

  31. 31.

    Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  32. 32.

    Fajardo HV, Probst LFD (2006) Appl Catal A 306:134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge CNPq and FINEP for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Humberto V. Fajardo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fajardo, H.V., Probst, L.F.D., Carreño, N.L.V. et al. Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts. Catal Lett 119, 228–236 (2007). https://doi.org/10.1007/s10562-007-9222-6

Download citation

Keywords

  • Hydrogen
  • Cerium oxide
  • Ethanol
  • Steam reforming