Skip to main content

Advertisement

Log in

Epoxidation of Propylene by Molecular Oxygen Over the Ag–Y2O3–K2O/α-Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Ag/α-Al2O3 catalyst modified with rare earth metal oxide (Y2O3) and alkali metal oxide (K2O) for the epoxidation of propylene by molecular oxygen were prepared and characterized by TG-DTA, XRD and XPS. The results show that a small quantity of Y2O3 added plays a role of electron and structure-type promoters, and can change the binding energies of Ag3d and restrain the sintering of Ag crystallites during catalyst preparation. The effects of promoters loading, Ag loading, reaction temperature, and calcination atmosphere on the performance of Ag catalyst were investigated. The results show that the loadings of K2O, Y2O3 and Ag, and reaction temperature affect obviously the catalytic performance of Ag–Y2O3–K2O/α-Al2O3 for the epoxidation of propylene to propylene oxide. Under the reaction conditions of 0.1 MPa, 245 °C, GHSV of 2000 h−1 and the feed gas of 20%C3H6/8%O2/N2, the conversion of propylene of 4% and the selectivity to propylene oxide of 46.8% were achieved over the 20%Ag–0.1%Y2O3–0.1%K2O/α-Al2O3 catalyst.

Graphical Abstract

Y2O3 plays a role of electron and structure-type promoters in the Ag–Y2O3–K2O/α-Al2O3 catalyst, which can change the binding energies of Ag3d and restrain the sintering of Ag crystallites, resulting in obvious improvement of the catalytic performance of Ag–Y2O3–K2O/α-Al2O3 for the epoxidation of propylene to propylene oxide by molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weissermel K, Arpe HJ (1993) Industrial Organic Chemistry, 2nd ed. Wiley VCH, New York

    Google Scholar 

  2. Trent DL (1996) Kirk–Othmer Encyclopedia of Chemical Technology, 4th ed Vol. 20. Wiley, New York

    Google Scholar 

  3. Hu ZM, Nakai H, Nakatsuji H (1998) Surf Sci 401:371

    Article  CAS  Google Scholar 

  4. Barteau MA, Madix RJ (1983) J Am Chem Soc 105:344

    Article  CAS  Google Scholar 

  5. Akimoto M, Ichikawa K, Echigoya E (1982) J Catal 76:333

    Article  CAS  Google Scholar 

  6. Imachi M, Egashira M, Kuczkowski RL, Cant NW (1981) J Catal 70:177

    Article  CAS  Google Scholar 

  7. Geenen PV, Boss HJ, Pott GT (1982) J Catal 77:499

    Article  CAS  Google Scholar 

  8. Kitson M, Lambert RM (1981) Surf Sci 110:205

    Article  CAS  Google Scholar 

  9. Grant RB, Lambert RM (1985) J Catal 92:364

    Article  CAS  Google Scholar 

  10. Atkins M, Couves J, Hague M, Sakakini BH, Waugh KC (2005) J Catal 235:103

    Article  CAS  Google Scholar 

  11. Couves J, Atkins M, Hague M, Sakakini BH, Waugh KC (2005) Catal Lett 99:45

    Article  CAS  Google Scholar 

  12. Pitchai R, Kahn AP, Gaffney AM (1997) US Patent 5,625,084

  13. Pitchai R, Kahn AP, Gaffney AM (1997) US Patent 5,686,380

  14. Gaffney AM, Jones CA, Pitchai R, Kahn AP (1997) US Patent 5,698,719

  15. Gaffney AM, Kahn AP, Pitchai R (1997) US Patent 5,703,254

  16. Cooker B, Gaffney AM, Jewson JD, Kahn AP, Pitchai R (1998) US Patent 5,770,746

  17. Cooker B, Gaffney AM, Jewson JD, Kahn AP, Onimus WH (1998) US Patent 5,780,657

  18. Jin GJ, Lu GZ, Guo YL, Guo Y, Wang JS, Liu XH (2004) Catal Lett 97:191

    Article  CAS  Google Scholar 

  19. Jin GJ, Lu GZ, Guo YL, Guo Y, Wang JS, Kong WY, Liu XH (2005) J Mol Catal A 232:165

    Article  CAS  Google Scholar 

  20. Lu GZ, Zuo XB (1999) Catal Lett 58:67

    Article  CAS  Google Scholar 

  21. Lu JQ, Luo MF, Lei H, Bao XH, Li C (2002) J Catal 211:552

    CAS  Google Scholar 

  22. Luo MF, Lu JQ, Li C (2003) Catal Lett 86:43

    Article  CAS  Google Scholar 

  23. Zatko DA, Prather JW (1973) J Electron Spectrosc Relat Phenom 2:191

    Article  CAS  Google Scholar 

  24. Jin GJ, Lu GZ, Guo YL, Guo Y, Wang JS, Liu XH (2004) Catal Today 93–95:173

    Article  Google Scholar 

  25. Bowker M, Waugh KC (1983) Surf Sci 134:639

    Article  CAS  Google Scholar 

  26. Minahan DM, Hoflund GB, Epling WS, Schoenfeldz DW (1997) J Catal 168:393

    Article  CAS  Google Scholar 

  27. Piao H, Adib K, Barteau MA (2004) Surf Sci 557:13

    Article  CAS  Google Scholar 

  28. Yang J, Deng JF, Yuan XH, Zhang S (1992) Appl Catal A 92:73

    Article  CAS  Google Scholar 

  29. Lu JQ, Luo MF, Lei H, Li C (2002) Appl Catal A 237:11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported financially by National Basic Research Program of China (2004CB719500) and National Natural Science Foundation of China (20173015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Zhong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, W., Guo, Y.L., Liu, X.H. et al. Epoxidation of Propylene by Molecular Oxygen Over the Ag–Y2O3–K2O/α-Al2O3 Catalyst. Catal Lett 119, 185–190 (2007). https://doi.org/10.1007/s10562-007-9220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9220-8

Keywords

Navigation