Skip to main content
Log in

Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt–Pd catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Applying a synthesis procedure that promotes alloy formation, highly-dispersed alumina-supported Pt–Pd catalysts spanning the Pt-rich half of the composition range were prepared, aged under oxygen-rich hydrothermal conditions, and characterized by CO chemisorption, XRD, and TEM. Anomalously large particles, typical of pure Pt catalysts treated under such conditions, were not found in any of the Pd-containing catalysts, and the extent of particle coarsening due to aging was found to decrease with increasing Pd content. Alloying appears to have little effect on the NO oxidation turn-over frequency, which increases with decreasing dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Takahashi N., Shinjoh H., Iijima T., Suzuki T., Yamazaki K., Yokota K., Suzuki H., Miyoshi S., Matsumoto S., Tanizawa T., Tanaka T., Tateishi S., Kasahara K. (1996) . Catal. Today 27:63

    Article  CAS  Google Scholar 

  2. Li M., Henao J., Yeom Y., Weitz E., Sachtler W.M.H. (2004) . Catal. Lett. 98:5

    Article  CAS  Google Scholar 

  3. P. Hawker, N. Myers, G. Huthwohl, H.T. Vogel, B. Bates, L. Magnusson and P. Bronnenberg, Society of Automotive Engineers, Paper No. 970182, 1997

  4. Graham G.W., Jen H.-W., Chun W., Sun H.P., Pan X.Q., McCabe R.W. (2004). Catal. Lett. 93:129

    Article  CAS  Google Scholar 

  5. Chen M., Schmidt L.D. (1979). J. Catal. 56:198

    Article  CAS  Google Scholar 

  6. Morlang A., Neuhausen U., Klementiev K.V., Schutze F.-W., Miehe G., Fuess H., Lox E.S. (2005). Appl. Catal. B 60:195

    Google Scholar 

  7. R.J. Kudla, H.-W. Jen, P.J. Schmitz, C.T. Goralski Jr., R.W. McCabe and G.W. Graham, 19th NACS (2005).

  8. Renouprez A., Malhomme A., Massardier J., Cattenot M., Bergeret G. (2000). Stud. Surf. Sci. Catal. 130C:2579

    Article  CAS  Google Scholar 

  9. Morfin F., Sabroux J.-C., Renouprez A. (2004). Appl. Catal. B 47: 47

    Article  CAS  Google Scholar 

  10. Wei L., Li T. (1997). Micros. Res. Tech. 36(5):380

    Article  CAS  Google Scholar 

  11. Schmitz P.J., Kudla R.J., Drews A.R., Chen A.E., Lowe-Ma C.K., McCabe R.W., Schneider W.F., Goralski C.T. Jr. (2006). Appl. Catal. B 67:246

    Article  CAS  Google Scholar 

  12. R.L. Moss, in: Experimental Methods in Catalytic Research, eds. R.B. Anderson and P. T. Dawson (Academic Press, New York, 1976) p. 74

  13. Bourane A., Derrouiche S., Bianchi D. (2004). J. Catal. 228:228

    Article  CAS  Google Scholar 

  14. Skotak M., Karpinski Z., Juszczyk W., Pielaszek J., Kepinski L., Kazachkin D.V., Kovalchuk V.I., d’Itri J.L. (2004). J. Catal. 227:11

    Article  CAS  Google Scholar 

  15. Benkhaled M., Morin S., Ch. Pichon, Thomazeau C., Verdon C., Uzio D. (2006). Appl. Catal. A 312:1

    Article  CAS  Google Scholar 

  16. Xu X., Goodman D.W. (1993). J. Phys. Chem. 97:7711

    Article  CAS  Google Scholar 

  17. Graham G.W., Sun H., Jen H.-W., Pan X.Q., McCabe R.W. (2002). Catal. Lett. 81:1

    Article  CAS  Google Scholar 

  18. Lee J.-H., Kung H.H. (1998). Catal. Lett. 51:1

    Article  CAS  Google Scholar 

  19. Mulla S.S., Chen N., Cumaranatunge L., Blau G.E., Zemlyanov D.Y., Delgass W.N., Epling W.S., Ribeiro F.H. (2006). J. Catal. 241:389

    Article  CAS  Google Scholar 

  20. H.-W. Jen (unpublished data)

Download references

Acknowledgments

The authors gratefully acknowledge the support of C. T. Goralski, Jr. during the early stages of this work, useful discussions with P. J. Schmitz, A. R. Drews, and S. J. Harris on the subject of NO oxidation, and technical assistance from J. Hangas. The JEOL 3011 TEM resides at EMAL, a facility of the University of Michigan, which is funded in part under NSF Grant DMR-9871177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. McCabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, G.W., Jen, HW., Ezekoye, O. et al. Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt–Pd catalysts. Catal Lett 116, 1–8 (2007). https://doi.org/10.1007/s10562-007-9124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9124-7

Keywords

Navigation