Catalysis Letters

, Volume 117, Issue 1–2, pp 62–67 | Cite as

Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts

Article

Hydrogenolysis of biomass-derived glycerol is an alternative route to sustainable production of propylene glycol. Cu–ZnO catalysts were prepared by coprecipitation with a range of Cu/Zn atomic ratio (0.6–2.0) and examined in glycerol hydrogenolysis to propylene glycol at 453–513 K and 4.2 MPa H2. These catalysts possess acid and hydrogenation sites required for bifunctional glycerol reaction pathways, most likely involving glycerol dehydration to acetol and glycidol intermediates on acidic ZnO surfaces, and their subsequent hydrogenation on Cu surfaces. Glycerol hydrogenolysis conversions and selectivities depend on Cu and ZnO particle sizes. Smaller ZnO and Cu domains led to higher conversions and propylene glycol selectivities, respectively. A high propylene glycol selectivity (83.6%), with a 94.3% combined selectivity to propylene glycol and ethylene glycol (also a valuable product) was achieved at 22.5% glycerol conversion at 473 K on Cu–ZnO (Cu/Zn = 1.0) with relatively small Cu particles. Reaction temperature effects showed that optimal temperatures (e.g. 493 K) are required for high propylene glycol selectivities, probably as a result of optimized adsorption and transformation of the reaction intermediates on the catalyst surfaces. These preliminary results provide guidance for the synthesis of more efficient Cu–ZnO catalysts and for the optimization of reaction parameters for selective glycerol hydrogenolysis to produce propylene glycol.

Keywords

selective hydrogenolysis glycerol propylene glycol Cu–Zn catalysts 

References

  1. 1.
    R.D. Cortright, M. Sanchez-Castillo and J.A. Dumesic, Appl. Catal. B 39 (2002) 353.CrossRefGoogle Scholar
  2. 2.
    J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and C. Rosier, Green Chem. 6 (2004) 359.CrossRefGoogle Scholar
  3. 3.
    M.A. Dasari, P.-P. Kiatsimkul, W.R. Sutterlin and G.J. Suppes, Appl. Catal. A 281 (2005) 225.CrossRefGoogle Scholar
  4. 4.
    A. Perosa and P. Tundo, Ind. Eng. Chem. Res. 44 (2005) 8535.CrossRefGoogle Scholar
  5. 5.
    C.-W. Chiu, M.A. Dasari, W.R. Sutterlin and G.J. Suppes, Ind. Eng. Chem. Res. 45 (2006) 791.CrossRefGoogle Scholar
  6. 6.
    Y. Kusunoki, T. Miyazawa, K. Kunimori, K. Tomishige, Catal. Commun. 6 (2005) 645.CrossRefGoogle Scholar
  7. 7.
    B. Casale and A.M. Gomze U.S. Patent 5 (1993) 214.Google Scholar
  8. 8.
    T. Miyazawa, Y. Kusunoki, K. Kunimori and K.J. Tomishige Catalysis 240 (2006) 213.CrossRefGoogle Scholar
  9. 9.
    C. Montassier, J.M. Dumas, P. Granger and J. Barbier, Appl. Catal. A 121 (1995) 231.CrossRefGoogle Scholar
  10. 10.
    G.J. de A. A. Soler-Illia, R.J. Candal, A.E. Regazzoni and M.A. Blesa, Chem. Mater. 9 (1997) 184.CrossRefGoogle Scholar
  11. 11.
    T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano and K. Takehira, Appl. Catal. A 303 (2006) 62.CrossRefGoogle Scholar
  12. 12.
    A. Guinier, Theorie et Technique de la Radiocristallographie, 3rd edn., Paris, 1964, p. 482.Google Scholar
  13. 13.
    M.R. Nimlos, S.J. Blanksby, X. Qian, M.E. Himmel and D.K. Johnson, J. Phys. Chem. A 110 (2006) 6145.CrossRefGoogle Scholar
  14. 14.
    Q. Li, L. Gao, W. Luan and D. Yan, J. Inorg. Mater (China). 14 (1999) 813.Google Scholar
  15. 15.
    P.C. Hiemenz, Principles of Colloid and Surface Chemistry. New York: Marcel Dekker Inc., 1986.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Green Chemistry CenterPeking UniversityBeijingChina

Personalised recommendations