Skip to main content

Advertisement

Log in

Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molybdenum carbide catalysts were successfully prepared using original multi-walled carbon nanotubes (MWCNTs) and nitric acid treated ones as support and carbon source by carbothermal hydrogen reduction from 580 °C to 700 °C. Ammonium heptamolybdate was used as Mo precursor and the effects of oxygen functional groups on MWCNT surface were investigated. TEM and XRD results show that oxygen functional groups act as anchor sites to interact with the Mo oxyanion species during impregnation, which promote the dispersion of Mo precursors. Due to the relatively strong interaction between Mo precursors and MWCNTs, the agglomeration of Mo carbide particles is prevented even when the treatment temperature is as high as 700 °C. Moreover, as the support, modified MWCNTs exhibit better thermal resistances. The temperature (580 °C) for Mo2C formation over MWCNTs is much lower than that over conventional carbon supports using carbothermal hydrogen reduction. The methylcyclohexane dehydrogenation was used as a probe reaction to test the catalytic performances of the Mo2C catalysts obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Levy R.B., Boudart M. (1973) Science 181:547

    Article  CAS  Google Scholar 

  2. Oyama S.T. (1992) Catal. Today 15:179

    Article  CAS  Google Scholar 

  3. Chen J.G. (1996) Chem. Rev. 96:1477

    Article  CAS  Google Scholar 

  4. Bouchy C., Schmidt I., Anderson J.R., Jacobsen C.J.H., Derouane E.G., Derouane-Abd Hamid S.B. (2000) J. Mol. Catal. A 163:283

    Article  CAS  Google Scholar 

  5. Lee J.S., Locatelli S., Oyama S.T., Boudart M. (1990) J. Catal. 125:157

    Article  CAS  Google Scholar 

  6. Solymosi F., Nemeth R., Ovari L., Egri L. (2000) J. Catal. 195:316

    Article  CAS  Google Scholar 

  7. Nagai M., Oshikawa K., Kurakami T., Miyao T., Omi S. (1998) J. Catal. 180:14

    Article  CAS  Google Scholar 

  8. Lee J.S., Yeom M.H., Park K.Y., Nam I.S., Chung J.S., Kim Y.G., Moon S.H. (1991) J. Catal. 128:126

    Article  CAS  Google Scholar 

  9. A.P.E. York, J.B. Claridge, A.J. Brungs, S.C. Tsang and M.L.H. Green, Chem. Commun (1997) 39

  10. Patt J., Moon D.J., Phillips C., Thompson L. (2000) Catal. Lett. 65:193

    Article  CAS  Google Scholar 

  11. Costa P.D., Potvin C., Manoli J.M., Lemberton J.L., Perot G., Djega-Mariadassou G. (2002) J. Mol. Catal. A 184:323

    Article  Google Scholar 

  12. Sayag C., Suppan S., Trawczynski J., Djega-Mariadassou G. (2002) Fuel Process Technol. 77–78:261

    Article  Google Scholar 

  13. Tsuji M., Miyao T., Naito S. (2000) Catal. Lett. 69:195

    Article  CAS  Google Scholar 

  14. Brungs A.J., York A.P.E., Claridge J.B., Marquez-Alvarez C., Green M.L.H. (2000) Catal. Lett. 70:117

    Article  CAS  Google Scholar 

  15. Solymosi F., Szechenyi A. (2004) J. Catal. 223:221

    Article  CAS  Google Scholar 

  16. Ledoux M.J., Pham-Huu C. (2001) Cattech 5:226

    Article  CAS  Google Scholar 

  17. Mordenti D., Brodzki D., Djega-Mariadassou G. (1998) J. Solid State Chem. 141:114

    Article  CAS  Google Scholar 

  18. Liang C.H., Ying P.L., Li C. (2002) Chem. Mater. 14:3148

    Article  CAS  Google Scholar 

  19. Sayag C., Benkhaled M., Suppan S., Trawczynski J., Djega-Mariadassou G. (2004) Appl. Catal. A 275:15

    Article  CAS  Google Scholar 

  20. Monteverdi S., Mercy M., Molina S., Bettahar M.M., Puricelli S., Begin D., Mareche F., Furdin F. (2002) Appl. Catal. A 230:99

    Article  CAS  Google Scholar 

  21. Serp P., Corrias M., Kalck P. (2003) Appl. Catal. A 253:337

    Article  CAS  Google Scholar 

  22. Park H., Kim M.H., Hwang Y.K., Chang J.S., Kwon Y.U. (2005) Chem. Lett. 34:222

    Article  CAS  Google Scholar 

  23. Yang Z.H., Cai P.J., Shi L., Gu Y.L., Chen L.Y., Qian Y.T. (2006) J. Solid State Chem. 179:29

    Article  CAS  Google Scholar 

  24. Chen W., Pan X.L., Willinger M.G., Su D.S., Bao X.H. (2006) J. Am. Chem. Soc. 128:3136

    Article  CAS  Google Scholar 

  25. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison Wesley Publishing Co., Menlo Park, CA, 1978) p. 102

  26. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Orfao J.J.M. (1999) Carbon 37:1379

    Article  CAS  Google Scholar 

  27. Aksoylu A.E., Madalena M., Freitas A., Pereira M.F.R., Figueiredo J.L. (2001) Carbon 39:175

    Article  CAS  Google Scholar 

  28. Hiura H., Ebbesen T.W., Tanigaki K. (1995) Adv. Mater. 7:275

    Article  CAS  Google Scholar 

  29. Li Z.J., Kruk M., Jaroniec M., Ryu S.K. (1998) J. Colloid Interf. Sci. 204:151

    Article  CAS  Google Scholar 

  30. Mulcahy F.M., Fay M.J., Proctor A., Houalla M., Hercules D.M. (1990) J. Catal. 124:231

    Article  CAS  Google Scholar 

  31. Bergwerff J.A., Visser T., Leliveld B.R.G., Rossenaar B.D., Jong K.P., Weckhuysen B.M. (2004) J. Am. Chem. Soc. 126:14548

    Article  CAS  Google Scholar 

  32. Spanos N., Matralis H.K., Kordulis C., Lycourghiotis A. (1992) J. Catal. 136:432

    Article  CAS  Google Scholar 

  33. Solar J.M., Derbyshire F.J., De Beer V.H.J., Radovic L.R. (1991) J. Catal. 129:330

    Article  CAS  Google Scholar 

  34. Vissers J.P.R., Bouwens S.M.A.M., De Beer V.H.J., Prins R. (1987) Carbon 25:485

    Article  CAS  Google Scholar 

  35. Cruywagen J.J., De Wet H.F. (1988) Polyhedron 7:547

    Article  CAS  Google Scholar 

  36. de la Puente G., Centeno A., Gil A., Grange P. (1998) J. Colloid Interf. Sci. 202:155

    Article  Google Scholar 

  37. Wang Y.G., Shah N., Huffman G.P. (2004) Energy Fuel 18:1429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 90206036) and the Ministry of Science and Technology of China through the National Key project of Fundamental Research (Grant No. 2005CB221405). We also thank referees for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhe Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Ma, D., Chen, L. et al. Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction. Catal Lett 116, 63–69 (2007). https://doi.org/10.1007/s10562-007-9093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9093-x

Keywords

Navigation