Skip to main content
Log in

In situ time-resolved characterization of novel Cu–MoO2 catalysts during the water–gas shift reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel and active Cu–MoO2 catalyst was synthesized by partial reduction of a precursor CuMoO4 mixed-metal oxide with CO or H2 at 200–250 °C. The phase transformations of Cu–MoO2 during H2 reduction and the water–gas shift reaction could be followed by in situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO4 collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water–gas shift (WGS) reaction, diffraction lines for Cu6Mo5O18 and MoO2 appeared around 350 °C and Cu6Mo5O18 was further transformed to Cu/MoO2 at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 °C. The interfacial interactions between Cu clusters and MoO2 increased the water–gas shift catalytic activities at 350 and 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. R. Burch, Phys. Chem. Chem. Phys. in press

  2. M.S. Spencer, Top Catal 8 (1999) 259

    Article  CAS  Google Scholar 

  3. G. Jacobs, E. Chenu, P.M. Patterson, L. Williams, D. Sparks, G. Thomas, B.H. Davis, Appl. Catal. A 258 (2004) 203

    Article  CAS  Google Scholar 

  4. W. Liu, M. Flytzani-Stephanopoulos, J. Catal. 153 (1995) 304

    Article  CAS  Google Scholar 

  5. A.N. Koryabkina, A.A. Phatak, F.W. Ruettinger, J.R. Farrauto, H.F. Ribeiro, J. Catal. 217 (2003) 233

    CAS  Google Scholar 

  6. X. Wang, J. Rodriguez, J. Hanson, D. Gamarra, A. Martínez-Arias, M. Fernández-Garcia, J. Phys. Chem. B 109 (2005) 19595

    Article  CAS  Google Scholar 

  7. X. Wang, J.A. Rodriguez, J.C. Hanson, D. Gamarra, A. Martinez-Arias, M. Fernandez-Garcia, J. Phys. Chem. B 110 (2006) 428

    Article  CAS  Google Scholar 

  8. X. Wang, J.C. Hanson, A.I. Frenkel, J.Y. Kim, J.A. Rodriguez, J. Phys. Chem. B 108 (2004) 13667

    Article  CAS  Google Scholar 

  9. J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, P.L. Lee, J. Am. Chem. Soc. 125 (2003) 10684

    Article  CAS  Google Scholar 

  10. B.H. Toby, J. Appl. Cryst. 34 (2001) 210

    Article  CAS  Google Scholar 

  11. A.C. Larson and R.B. Von Dreele, Los Alamos National Laboratory Report LAUR (2000) 86

  12. J.A. Rodriguez, S. Chaturvedi, J.C. Hanson, A. Albornoz, J.L. Brito, J. Phys. Chem. B 102 (1998) 1347

    Article  CAS  Google Scholar 

  13. J.A. Rodriguez, S. Chaturvedi, J.C. Hanson, J.L. Brito, J. Phys. Chem. B 103 (1999) 770

    Article  CAS  Google Scholar 

  14. M. Newville, B. Ravel, D. Haskel, J.J. Rehr, A.E. Stern, Y. Yacoby, Phys. B 154 (1995) 208

    Google Scholar 

  15. E. McCarron, J. Calabrese, J. Solid State Chem. 65 (1986) 215

    Article  CAS  Google Scholar 

  16. L. Katz, A. Kasenally, L. Kihlborg, Acta Cryst. B 27 (1971) 2071

    Article  CAS  Google Scholar 

  17. J.A. Rodriguez, J.Y. Kim, J.C. Hanson, J.L. Brito, Catal. Lett. 82 (2002) 103

    Article  CAS  Google Scholar 

  18. T. Ressler, R.E. Jentoft, J. Wienold, M.M. Günter, O. Timpe, J. Phys. Chem. B 104 (2000) 6360

    Article  CAS  Google Scholar 

  19. M. Pérez, J. Evans, J.M. Araujo and J.A. Rodriguez, to be published

  20. G. Waldo, Am. Mineral. 20 (1935) 59

    Google Scholar 

  21. W.P. Davery, Phys. Rev. 25 (1925) 753

    Article  Google Scholar 

  22. B.G. Brandt, A.C. Skapski, Acta Chem. Scand. 21 (1967) 661

    Article  CAS  Google Scholar 

  23. E.J. Lede, F.G. Requejo, B. Pawelec, J.L.G. Fierro, J. Phys. Chem. B 106 (2002) 7824

    Article  CAS  Google Scholar 

  24. S.R. Bare, Langmuir 14 (1998) 1500

    Article  CAS  Google Scholar 

  25. J.G. Chen, Surf. Sci. Rep. 30 (1997) 1

    Article  CAS  Google Scholar 

  26. G.N. George, W.E. Cleland Jr., J.H. Enemark, B.E. Smith, C.A. Kipke, S.A. Roberts, S.P. Cramer, J. Am. Chem. Soc. 112 (1990) 2541

    Article  CAS  Google Scholar 

  27. W. Wen, B. Kumarasamy, S. Mukerjee, M. Auinat, Y. Ein-Eli, J. Electrochem. Soc. 152 (2005) A1902

    Article  CAS  Google Scholar 

  28. M. Giorgetti, S. Passerini, W.H. Smyrl, S. Mukerjee, X.Q. Yang, J. McBreen, J. Electrochem. Soc. 146 (1999) 2387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division (DE-AC02–98CH10886). The NSLS is supported by the Chemical and Materials Science Divisions of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, W., Jing, L., White, M.G. et al. In situ time-resolved characterization of novel Cu–MoO2 catalysts during the water–gas shift reaction. Catal Lett 113, 1–6 (2007). https://doi.org/10.1007/s10562-006-9003-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-9003-7

Keywords

Navigation