Spatial and temporal profiles in millisecond partial oxidation processes

Methods are presented to measure axial species and temperature profiles within catalytic partial oxidation foam monoliths at atmospheric pressure with 0.3 mm spatial resolution using a capillary sampling technique with a quadrupole mass spectrometer. The system allows sampling within the catalyst with negligible interference in flow or temperature by using a 0.6 mm quartz capillary containing a thermocouple and possessing a 0.3 mm side orifice. The capillary tightly fills a concentric channel drilled within the 10 mm long ceramic foam minimizing gas bypass. This technique has been used to measure axial catalyst species profiles at temperatures up to 1300 °C for catalytic partial oxidation of methane and ethane to synthesis gas and ethylene, respectively. CH4 and O2 conversion are approximately twice as fast on Rh than on Pt. For C2H6 the reaction products at the catalyst entrance are H2, H2O, CO, and CO2. Ethylene production begins only after ~4 mm into the catalyst after most of the O2 has reacted. Transient operation where the feed composition is varied stepwise between different C/O ratios has also been used to characterize these systems. The capillary sampler has a time resolution of ~0.05 s, and C/O step changes within 0.5 s have been achieved using mass flow controllers. For switches from C/O = 0.6 to 1.4, sharp overshoots are observed for syngas (H2 and CO) and similar undershoots for combustion products (H2O and CO2). By placing the sampling orifice at different positions and stepping the C/O ratio, spatio-temporal profiles can be obtained. Spatio-temporal profiles are extremely important in validating detailed reaction mechanisms because their information content is much higher compared to integral steady state measurements at the reactor outlet. The spatial profiles show where and how quickly different species are formed or consumed along the catalyst axis. Transient profiles provide additional diagnostics of mechanisms and surface coverages because they show how temperature and species concentrations follow a perturbation from steady state.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L.D. Schmidt J. Siddall M. Bearden (2000) AIChE J. 46 1492 Occurrence Handle1:CAS:528:DC%2BD3cXmtVeitrY%3D Occurrence Handle10.1002/aic.690460802

    CAS  Article  Google Scholar 

  2. [2]

    D.J. Wilhelm D.R. Simbeck A.D. Karp R.L. Dickenson (2001) Fuel Process. Technol. 71 139 Occurrence Handle1:CAS:528:DC%2BD3MXjsFWmsr8%3D Occurrence Handle10.1016/S0378-3820(01)00140-0

    CAS  Article  Google Scholar 

  3. [3]

    T.H. Fleisch R.A. Sills M.D. Briscoe (2002) J. Nat. Gas Chem. 11 1 Occurrence Handle1:CAS:528:DC%2BD38XotVKjtbk%3D

    CAS  Google Scholar 

  4. [4]

    J.P. Lange R.J. Schoonebeek P.D.L. Mercera F.W. Breukelen Particlevan (2005) Appl. Catal. A–Gen 283 243 Occurrence Handle1:CAS:528:DC%2BD2MXit1CjtL0%3D Occurrence Handle10.1016/j.apcata.2005.01.011

    CAS  Article  Google Scholar 

  5. [5]

    D.A. Hickman L.D. Schmidt (1993) AIChE J. 39 1164 Occurrence Handle1:CAS:528:DyaK3sXlsVamt74%3D Occurrence Handle10.1002/aic.690390708

    CAS  Article  Google Scholar 

  6. [6]

    O. Deutschmann L.D. Schmidt (1998) AIChE J. 44 2465 Occurrence Handle1:CAS:528:DyaK1MXhtFKjsLs%3D Occurrence Handle10.1002/aic.690441114

    CAS  Article  Google Scholar 

  7. [7]

    C.T. Goralski R.P. O’Connor L.D. Schmidt (2000) Chem. Eng. Sci. 55 1357 Occurrence Handle1:CAS:528:DyaK1MXnsFertrY%3D Occurrence Handle10.1016/S0009-2509(99)00426-1

    CAS  Article  Google Scholar 

  8. [8]

    O. Deutschmann R. Schwiedernoch L.I. Maier D. Chatterjee (2001) Stud. Surf. Sci. Catal. 136 251 Occurrence Handle1:CAS:528:DC%2BD3MXmtVyks7o%3D

    CAS  Google Scholar 

  9. [9]

    R. Schwiedernoch S. Tischer C. Correa O. Deutschmann (2003) Chem. Eng. Sci. 58 633 Occurrence Handle1:CAS:528:DC%2BD3sXhsVSks78%3D Occurrence Handle10.1016/S0009-2509(02)00589-4

    CAS  Article  Google Scholar 

  10. [10]

    M.C. Huff I.P. Androulakis J.H. Sinfelt S.C. Reyes (2000) J. Catal. 191 46 Occurrence Handle1:CAS:528:DC%2BD3cXhvVyjsb4%3D Occurrence Handle10.1006/jcat.1999.2798

    CAS  Article  Google Scholar 

  11. [11]

    D.K. Zerkle M.D. Allendorf M. Wolf O. Deutschmann (2000) J. Catal. 196 18 Occurrence Handle1:CAS:528:DC%2BD3cXnvFWrtbk%3D Occurrence Handle10.1006/jcat.2000.3009

    CAS  Article  Google Scholar 

  12. [12]

    F. Donsì K.A. Williams L.D. Schmidt (2005) Ind. Eng. Res. Chem. 44 3453 Occurrence Handle10.1021/ie0493356 Occurrence Handle1:CAS:528:DC%2BD2MXivV2lu70%3D

    Article  CAS  Google Scholar 

  13. [13]

    F. Basile G. Fornasari F. Trifiro A. Vaccari (2001) Catal. Today 64 21 Occurrence Handle1:CAS:528:DC%2BD3MXht1Khu70%3D Occurrence Handle10.1016/S0920-5861(00)00505-8

    CAS  Article  Google Scholar 

  14. [14]

    L. Basini K. Aasberg-Petersen A. Guarinoni M. Ostberg (2001) Catal. Today 64 9 Occurrence Handle1:CAS:528:DC%2BD3MXht1Khu7w%3D Occurrence Handle10.1016/S0920-5861(00)00504-6

    CAS  Article  Google Scholar 

  15. [15]

    M. Bizzi L. Basini G. Saracco V. Specchia (2002) Chem. Eng. J. (Amsterdam, Netherlands) 90 97 Occurrence Handle1:CAS:528:DC%2BD38Xotl2lu7w%3D

    CAS  Google Scholar 

  16. [16]

    S. Marengo P. Comotti G. Galli (2003) Catal. Today 81 205 Occurrence Handle1:CAS:528:DC%2BD3sXks1Wns70%3D Occurrence Handle10.1016/S0920-5861(03)00117-2

    CAS  Article  Google Scholar 

  17. [17]

    B. Li K. Maruyama M. Nurunnabi K. Kunimori K. Tomishige (2004) Appl. Catal. A–Gen. 275 157 Occurrence Handle1:CAS:528:DC%2BD2cXnvFajuro%3D Occurrence Handle10.1016/j.apcata.2004.07.047

    CAS  Article  Google Scholar 

  18. [18]

    M. Bizzi G. Saracco R. Schwiedernoch O. Deutschmann (2004) AIChE J. 50 1289 Occurrence Handle1:CAS:528:DC%2BD2cXks12itrw%3D Occurrence Handle10.1002/aic.10118

    CAS  Article  Google Scholar 

  19. [19]

    E.J. Klein S. Tummala L.D. Schmidt (2001) Stud. Surf. Sci. Catal. 136 245 Occurrence Handle1:CAS:528:DC%2BD3MXmtVyks70%3D Occurrence Handle10.1016/S0167-2991(01)80311-6

    CAS  Article  Google Scholar 

  20. [20]

    D.A. Henning L.D. Schmidt (2002) Chem. Eng. Sci. 57 2615 Occurrence Handle1:CAS:528:DC%2BD38XlsVKjsb0%3D Occurrence Handle10.1016/S0009-2509(02)00155-0

    CAS  Article  Google Scholar 

  21. [21]

    T.C. Bond, R.A. Noguchi, C.-P. Chou, R.K. Mongia, J.-Y. Chen, and R.W. Dibble, Symposium (International) on Combustion, [Proceedings], 26th (1996) 1771.

  22. [22]

    M. Lyubovsky S. Roychoudhury R. LaPierre (2005) Catal. Lett. 99 113 Occurrence Handle1:CAS:528:DC%2BD2MXovFOltw%3D%3D Occurrence Handle10.1007/s10562-005-2103-y

    CAS  Article  Google Scholar 

  23. [23]

    A.B. Mhadeshwar D.G. Vlachos (2005) J. Phys. Chem. B 109 16819 Occurrence Handle1:CAS:528:DC%2BD2MXnvVahtLo%3D Occurrence Handle10.1021/jp052479t

    CAS  Article  Google Scholar 

  24. [24]

    R.W. Sidwell H. Zhu B.A. Kibler R.J. Kee D.T. Wickham (2003) Appl. Catal. A–Gen. 255 279–288 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Giu7o%3D Occurrence Handle10.1016/S0926-860X(03)00566-0

    CAS  Article  Google Scholar 

  25. [25]

    R.W. Sidwell H. Zhu R.J. Kee D.T. Wickham (2003) Combust. Flame 134 55–66 Occurrence Handle1:CAS:528:DC%2BD3sXls1Sqsb4%3D Occurrence Handle10.1016/S0010-2180(03)00064-6

    CAS  Article  Google Scholar 

  26. [26]

    M. Reinke J. Mantzaras R. Schaeren R. Bombach A. Inauen S. Schenker (2004) Combust. Flame 136 217 Occurrence Handle1:CAS:528:DC%2BD2cXmtFKjsw%3D%3D Occurrence Handle10.1016/j.combustflame.2003.10.003

    CAS  Article  Google Scholar 

  27. [27]

    M. Reinke J. Mantzaras R. Bombach S. Schenker A. Inauen (2005) Combust. Flame 141 448 Occurrence Handle1:CAS:528:DC%2BD2MXktleisb0%3D Occurrence Handle10.1016/j.combustflame.2005.01.016

    CAS  Article  Google Scholar 

  28. [28]

    J.D. Grunwaldt A. Baiker (2005) Catal. Lett. 99 5 Occurrence Handle1:CAS:528:DC%2BD2MXotFKi

    CAS  Google Scholar 

  29. [29]

    J.D. Grunwaldt S. Hannemann C.G. Schroer A. Baiker (2006) J. Phys. Chem. B 110 8674 Occurrence Handle1:CAS:528:DC%2BD28Xjt1Wlt7w%3D Occurrence Handle10.1021/jp060371n

    CAS  Article  Google Scholar 

  30. [30]

    A.S. Bodke S.S. Bharadwaj L.D. Schmidt (1998) J. Catal. 179 138 Occurrence Handle1:CAS:528:DyaK1cXmsV2jsLw%3D Occurrence Handle10.1006/jcat.1998.2224

    CAS  Article  Google Scholar 

  31. [31]

    A.E. Schweizer G.T. Kerr (1978) Inorg. Chem. 17 2326 Occurrence Handle1:CAS:528:DyaE1cXkvVequ74%3D Occurrence Handle10.1021/ic50186a067

    CAS  Article  Google Scholar 

  32. [32]

    K.A. Williams C.A. Leclerc L.D. Schmidt (2005) AIChE J. 51 247 Occurrence Handle1:CAS:528:DC%2BD2MXhvFGnsQ%3D%3D Occurrence Handle10.1002/aic.10294

    CAS  Article  Google Scholar 

  33. [33]

    K.A. Williams L.D. Schmidt (2006) Appl. Catal. A–Gen. 299 30 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCnsLzJ Occurrence Handle10.1016/j.apcata.2005.09.039

    CAS  Article  Google Scholar 

  34. [34]

    V.H. Dibeler, Mass Spectrometry, ed. C.A. McDowell. 1963, New York: McGraw-Hill.

  35. [35]

    J.M. Ruth (1968) Anal. Chem. 40 747 Occurrence Handle1:CAS:528:DyaF1cXpt1Kmsg%3D%3D Occurrence Handle10.1021/ac60260a018

    CAS  Article  Google Scholar 

  36. [36]

    R. Horn, K.A. Williams, N.J. Degenstein and L.D. Schmidt, J. Catal. in press (2006).

  37. [37]

    A. Beretta E. Ranzi P. Forzatti (2001) Chem. Eng. Sci. 56 779 Occurrence Handle1:CAS:528:DC%2BD3MXhsVKku70%3D Occurrence Handle10.1016/S0009-2509(00)00289-X

    CAS  Article  Google Scholar 

  38. [38]

    A. Beretta E. Ranzi P. Forzatti (2001) Catal. Today 64 103 Occurrence Handle1:CAS:528:DC%2BD3MXht1Kgsrw%3D Occurrence Handle10.1016/S0920-5861(00)00514-9

    CAS  Article  Google Scholar 

  39. [39]

    C.A. Mims R. Mauti A.M. Dean K.D. Rose (1994) J. Phys. Chem. 98 13357 Occurrence Handle1:CAS:528:DyaK2cXntVSnsLw%3D Occurrence Handle10.1021/j100101a041

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lanny D. Schmidt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horn, R., Degenstein, N.J., Williams, K.A. et al. Spatial and temporal profiles in millisecond partial oxidation processes. Catal Lett 110, 169–178 (2006). https://doi.org/10.1007/s10562-006-0117-8

Download citation

Keywords

  • catalytic partial oxidation
  • spatial profiles
  • spatio-temporal profiles
  • mass spectrometry
  • methane
  • ethane
  • syngas
  • ethylene
  • platinum
  • rhodium