Skip to main content
Log in

Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The partial oxidation of methane was studio on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2 and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst. For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane and its behaviour was explained by a change in the reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Lunsford (2000) Catal. Today 63 165 Occurrence Handle1:CAS:528:DC%2BD3cXotlKnur4%3D Occurrence Handle10.1016/S0920-5861(00)00456-9

    Article  CAS  Google Scholar 

  2. J.R. Rostrup-Nielsen J. Sehested (2002) Adv. Catal. 47 65 Occurrence Handle1:CAS:528:DC%2BD3sXhtVyhtb4%3D

    CAS  Google Scholar 

  3. S. Freni G. Calogero S. Cavallaro (2000) J. Power Sources 87 28 Occurrence Handle1:CAS:528:DC%2BD3cXitFyqtbo%3D Occurrence Handle10.1016/S0378-7753(99)00357-2

    Article  CAS  Google Scholar 

  4. P.D.F. Vernon M.L.H. Green A.K. Cheetham A.T. Ashcroft (1990) Catal. Lett. 6 181 Occurrence Handle1:CAS:528:DyaK3MXktlWmsLw%3D Occurrence Handle10.1007/BF00774718

    Article  CAS  Google Scholar 

  5. P.M. Torniainen X. Chu L.D. Schmidt (1994) J. Catal. 146 1 Occurrence Handle1:CAS:528:DyaK2cXit1ajs7g%3D Occurrence Handle10.1016/0021-9517(94)90002-7

    Article  CAS  Google Scholar 

  6. Y. Boucouvalas Z. Zhang X.E. Verykios (1996) Catal. Lett. 40 189 Occurrence Handle1:CAS:528:DyaK28Xlt1KgtrY%3D Occurrence Handle10.1007/BF00815281

    Article  CAS  Google Scholar 

  7. A.A. Lemonidou A.E. Stambouli G.J. Tjatjopoulos I.A. Vasalos (1997) Catal. Lett. 43 235 Occurrence Handle1:CAS:528:DyaK2sXht1Cktro%3D Occurrence Handle10.1023/A:1018975630498

    Article  CAS  Google Scholar 

  8. A.G. Steghuis J.G. Ommen ParticleVan J.A. Lercher (1998) Catal. Today 46 91 Occurrence Handle1:CAS:528:DyaK1cXmvVyrsbw%3D Occurrence Handle10.1016/S0920-5861(98)00330-7

    Article  CAS  Google Scholar 

  9. L.V. Mattos, E.R. de Oliveira, P.D. Resende, F.B. Noronha and F.B. Passos, Catal. Today 77 (2002) 245.

  10. L.V. Mattos E. Rodino D.E. Resasco F.B. Passos F.B. Noronha (2003) Fuel Process. Technol. 1677 1

    Google Scholar 

  11. C.E. Hori H. Permana K.Y.S. Ng A. Brenner K. More K.M. Rahmoeller D. Belton (1998) Appl. Catal. Environ. B 16 105 Occurrence Handle1:CAS:528:DyaK1cXhvVyhur0%3D Occurrence Handle10.1016/S0926-3373(97)00060-X

    Article  CAS  Google Scholar 

  12. F.B. Passos M. Schmal R. Frety (1992) Catal. Lett. 14 57 Occurrence Handle1:CAS:528:DyaK38Xltlymtrc%3D Occurrence Handle10.1007/BF00764219

    Article  CAS  Google Scholar 

  13. E. Rogemond N. Essayem R. Frety V. Perrichon M. Primet F. Mathis (1997) J. Catal. 166 229 Occurrence Handle1:CAS:528:DyaK2sXhs1Gntrg%3D Occurrence Handle10.1006/jcat.1997.1493

    Article  CAS  Google Scholar 

  14. M. Pettre Ch. Eichner M. Perrin (1946) Trans. Faraday Soc. 43 335 Occurrence Handle10.1039/tf946420335b

    Article  Google Scholar 

  15. D. Dissanayake M.P. Rosynek K.C.C. Kharas J.H. Lunsford (1991) J. Catal. 132 117 Occurrence Handle1:CAS:528:DyaK3MXmtFWmurw%3D Occurrence Handle10.1016/0021-9517(91)90252-Y

    Article  CAS  Google Scholar 

  16. M.E.S. Hegarty A.M. O’Connor J.R.H. Ross (1998) Catal. Today 42 225 Occurrence Handle1:CAS:528:DyaK1cXkt1eltbs%3D Occurrence Handle10.1016/S0920-5861(98)00096-0

    Article  CAS  Google Scholar 

  17. M.M.V.M. Souza M. Schmal (2005) Appl. Catal. A: Gen. 281 19 Occurrence Handle1:CAS:528:DC%2BD2MXhsFSitrs%3D Occurrence Handle10.1016/j.apcata.2004.11.007

    Article  CAS  Google Scholar 

  18. W.J.M. Vermeiren E. Blomsma P.A. Jacobs (1992) Catal. Today 13 421 Occurrence Handle10.1016/0920-5861(92)80168-M

    Article  Google Scholar 

  19. E.P.J. Mallens J.H.B.J. Hoebink C.B. Marin (1995) Catal. Lett. 33 291 Occurrence Handle1:CAS:528:DyaK2MXnt1Grt7s%3D Occurrence Handle10.1007/BF00814232

    Article  CAS  Google Scholar 

  20. Y.H. Hu E. Ruckenstein (1998) J. Phys. Chem. A. 102 10568 Occurrence Handle1:CAS:528:DyaK1cXnsF2ns7c%3D Occurrence Handle10.1021/jp9837535

    Article  CAS  Google Scholar 

  21. W.Z. Wheng M.S. Chen Q.G. Yan T.H. Wu Z.S. Chao Y.Y. Liao H.L. Wan (2000) Catal. Today 63 317 Occurrence Handle10.1016/S0920-5861(00)00475-2

    Article  Google Scholar 

  22. D. Wang O. Dewaele A.M. Groote Particlede G.F. Froment (1996) J. Catal. 159 418 Occurrence Handle1:CAS:528:DyaK28XivFCgtLg%3D Occurrence Handle10.1006/jcat.1996.0105

    Article  CAS  Google Scholar 

  23. L.V. Mattos, E.R. Oliveira, P.D. Resende, P. D., F. B. Noronha and F. B. Passos, Catal. Today 101 (2005) 23.

  24. E. Ruckenstein H. Wang (2000) J. Catal. 190 32 Occurrence Handle1:CAS:528:DC%2BD3cXnsVertA%3D%3D Occurrence Handle10.1006/jcat.1999.2736

    Article  CAS  Google Scholar 

  25. H. Nishimoto K. Nakagawa N. Ikenaga T. Suzuki (2002) Catal. Lett. 82 161 Occurrence Handle1:CAS:528:DC%2BD38Xns1Cmtbk%3D Occurrence Handle10.1023/A:1020554309639

    Article  CAS  Google Scholar 

  26. J. Wei, E.J. Iglesia, J. Phys. Chem. B 108 (2004) 4094.

    Google Scholar 

  27. M.H. Yao R.J. Baird F.W. Kunz T.E. Hoost (1997) J. Catal. 166 67 Occurrence Handle1:CAS:528:DyaK2sXhtVKgsrk%3D Occurrence Handle10.1006/jcat.1997.1504

    Article  CAS  Google Scholar 

  28. J. Kaspar P. Fornasiero M. Graziani (1999) Catal. Today 50 285 Occurrence Handle1:CAS:528:DyaK1MXitVKgu7s%3D Occurrence Handle10.1016/S0920-5861(98)00510-0

    Article  CAS  Google Scholar 

  29. D.L. Trimm (1999) Catal. Today 49 3 Occurrence Handle1:CAS:528:DyaK1MXps1Khsw%3D%3D Occurrence Handle10.1016/S0920-5861(98)00401-5

    Article  CAS  Google Scholar 

  30. J.R. Rostrup-Nielsen I. Alstrup (1999) Catal. Today 53 311 Occurrence Handle1:CAS:528:DyaK1MXnsFeqsLs%3D Occurrence Handle10.1016/S0920-5861(99)00125-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio B. Passos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passos, F.B., Oliveira, E.R., Mattos, L.V. et al. Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts. Catal Lett 110, 161–167 (2006). https://doi.org/10.1007/s10562-006-0105-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0105-z

Keywords

Navigation