Skip to main content

Examination of catalytic behavior and origin of the initial transient period for Pt nanoclusters modified with cinchonidine

Abstract

Nanoclusters prepared by a novel water-free method are compared directly with nanoclusters prepared by the known aqueous preparation as well as conventional Pt/Al2O3 for the enantioselective hydrogenation of ethyl pyruvate. The catalytic behavior of cinchonidine on colloidal Pt was investigated during ethyl pyruvate hydrogenation in acetic acid under 10 bar of hydrogen at 22 °C with (1 mmol  L−1) and without addition of free cinchonidine. The effect of hydrogen pressure, cinchonidine concentration, ethyl pyruvate and catalyst loading on the enantiomeric excess (EE) with time were also studied. Through these studies, we propose that the nature of the observed initial transient period (ITP) for these “quasi-homogeneous” systems may be explained by desorption of the weakly adsorbed tilted “N lone pair bonded” cinchonidine species from the Pt surface due to interaction with hydrogen.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Orito, S. Imai and S. Niwa, Nippon Kagaku Kaishi (1979) 1118.

  2. 2.

    T. Mallat A. Baiker (1998) J. Catal. 176 271 Occurrence Handle1:CAS:528:DyaK1cXjs1Shu7w%3D Occurrence Handle10.1006/jcat.1998.2081

    CAS  Article  Google Scholar 

  3. 3.

    D.G. Blackmond (1998) J. Catal. 176 267 Occurrence Handle1:CAS:528:DyaK1cXjs1Shu78%3D Occurrence Handle10.1006/jcat.1998.2080

    CAS  Article  Google Scholar 

  4. 4.

    T. Mallat Z. Bodnar B. Minder K. Borszeky A. Baiker (1997) J. Catal. 168 183 Occurrence Handle1:CAS:528:DyaK2sXjslSitLc%3D Occurrence Handle10.1006/jcat.1997.1630

    CAS  Article  Google Scholar 

  5. 5.

    U.K. Singh R.N. Landau Y.K. Sun C. Leblond D.G. Blackmond S.K. Tanielyan R.L. Augustine (1995) J. Catal. 154 91 Occurrence Handle1:CAS:528:DyaK2MXmtVKhtr8%3D Occurrence Handle10.1006/jcat.1995.1150

    CAS  Article  Google Scholar 

  6. 6.

    Y.K. Sun J. Wang C. Leblond R.N. Landau D.G. Blackmond (1996) J. Catal. 161 759 Occurrence Handle1:CAS:528:DyaK28XltVCmu74%3D Occurrence Handle10.1006/jcat.1996.0238

    CAS  Article  Google Scholar 

  7. 7.

    K. Balazsik M. Bartok (2004) J. Catal. 224 463 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGisL8%3D Occurrence Handle10.1016/j.jcat.2004.03.020

    CAS  Article  Google Scholar 

  8. 8.

    G.J. Hutchings (2005) Annu. Rev. Mater. Res. 35 143 Occurrence Handle1:CAS:528:DC%2BD2MXpsFGjt7w%3D Occurrence Handle10.1146/annurev.matsci.35.100303.122029

    CAS  Article  Google Scholar 

  9. 9.

    X.B. Li R.P.K. Wells P.B. Wells G.J. Hutchings (2003) Catal. Lett. 89 163 Occurrence Handle1:CAS:528:DC%2BD3sXnt1ans7k%3D Occurrence Handle10.1023/A:1025780126335

    CAS  Article  Google Scholar 

  10. 10.

    H. Bönnemann G.A. Braun (1996) Angew. Chem., Int. Ed. 35 1992 Occurrence Handle10.1002/anie.199619921

    Article  Google Scholar 

  11. 11.

    H. Bönnemann G. Braun W. Brijoux R. Brinkmann A.S. Tilling K. Seevogel K. Siepen (1996) J. Organomet. Chem. 520 143 Occurrence Handle10.1016/0022-328X(96)06273-0

    Article  Google Scholar 

  12. 12.

    H. Bönnemann G.A. Braun (1997) Chem. A Eur. J. 3 1200

    Google Scholar 

  13. 13.

    X.B. Zuo H.F. Liu D.W. Guo X.Z. Yang (1999) Tetrahedron 55 7787 Occurrence Handle1:CAS:528:DyaK1MXjvFansbw%3D Occurrence Handle10.1016/S0040-4020(99)00415-9

    CAS  Article  Google Scholar 

  14. 14.

    X.B. Zuo H.F. Liu J.F. Tian (2000) J. Mol. Catal. A: Chem. 157 217 Occurrence Handle1:CAS:528:DC%2BD3cXktFentb4%3D Occurrence Handle10.1016/S1381-1169(00)00072-8

    CAS  Article  Google Scholar 

  15. 15.

    B. Minder T. Mallat A. Baiker G. Wang T. Heinz A. Pfaltz (1995) J. Catal. 154 371 Occurrence Handle1:CAS:528:DyaK2MXmslekurs%3D Occurrence Handle10.1006/jcat.1995.1179

    CAS  Article  Google Scholar 

  16. 16.

    M. Studer H.U. Blaser C. Exner (2003) Adv. Synth. Catal. 345 45 Occurrence Handle1:CAS:528:DC%2BD3sXht12ru7w%3D Occurrence Handle10.1002/adsc.200390029

    CAS  Article  Google Scholar 

  17. 17.

    D. Ferri T. Burgi K. Borszeky T. Mallat A. Baiker (2000) J. Catal. 193 139 Occurrence Handle1:CAS:528:DC%2BD3cXktVKjtrs%3D Occurrence Handle10.1006/jcat.2000.2870

    CAS  Article  Google Scholar 

  18. 18.

    A. Baiker (2000) J. Mol. Catal. A: Chem. 163 205 Occurrence Handle1:CAS:528:DC%2BD3MXmtVCisQ%3D%3D Occurrence Handle10.1016/S1381-1169(00)00387-3

    CAS  Article  Google Scholar 

  19. 19.

    V. Morawsky U. Pruße L. Witte K.D. Vorlop (2000) Catal. Commun. 1 15 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyqt7k%3D Occurrence Handle10.1016/S1566-7367(00)00002-9

    CAS  Article  Google Scholar 

  20. 20.

    K. Balazsik M. Bartok (2004) J. Catal. 224 463 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGisL8%3D Occurrence Handle10.1016/j.jcat.2004.03.020

    CAS  Article  Google Scholar 

  21. 21.

    T. Evans A.P. Woodhead A. Gutierrez-Sosa G. Thornton T.J. Hall A.A. Davis N.A. Young P.B. Wells R.J. Oldman O. Plashkevych O. Vahtras H. Agren V. Carravetta (1999) Surf. Sci. 436 L691 Occurrence Handle1:CAS:528:DyaK1MXltV2itrk%3D Occurrence Handle10.1016/S0039-6028(99)00694-9

    CAS  Article  Google Scholar 

  22. 22.

    P.A. Meheux A. Ibbotson P.B. Wells (1991) J. Catal. 128 387 Occurrence Handle1:CAS:528:DyaK3MXitVKmsbo%3D Occurrence Handle10.1016/0021-9517(91)90297-H

    CAS  Article  Google Scholar 

  23. 23.

    M. Garland H.U. Blaser (1990) J. Am. Chem. Soc. 112 7048 Occurrence Handle1:CAS:528:DyaK3cXltlWgurc%3D Occurrence Handle10.1021/ja00175a042

    CAS  Article  Google Scholar 

  24. 24.

    H.U. Blaser M. Garland H.P. Jallet (1993) J. Catal. 144 569 Occurrence Handle1:CAS:528:DyaK2cXnvFyrtw%3D%3D Occurrence Handle10.1006/jcat.1993.1354

    CAS  Article  Google Scholar 

  25. 25.

    D. Ferri T. Burgi (2001) J. Am. Chem. Soc. 123 12074 Occurrence Handle1:CAS:528:DC%2BD3MXotFyktL4%3D Occurrence Handle10.1021/ja011769u

    CAS  Article  Google Scholar 

  26. 26.

    A. Kraynov A. Suchopar L. D’Souza R. Richards (2006) Phys. Chem. Chem. Phys. 8 1321 Occurrence Handle1:CAS:528:DC%2BD28XitFGhsr4%3D Occurrence Handle10.1039/b514750f

    CAS  Article  Google Scholar 

  27. 27.

    W. Chu R.J. LeBlanc C.T. Williams J. Kubota F. Zaera (2003) J. Phys. Chem. B 107 14365 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Wqu78%3D Occurrence Handle10.1021/jp0359586

    CAS  Article  Google Scholar 

  28. 28.

    J. Kubota F. Zaera (2001) J. Am. Chem. Soc. 123 11115 Occurrence Handle1:CAS:528:DC%2BD3MXnsFansr0%3D Occurrence Handle10.1021/ja016722n

    CAS  Article  Google Scholar 

  29. 29.

    J. Kubota Z. Ma F. Zaera (2003) Langmuir 19 3371 Occurrence Handle1:CAS:528:DC%2BD3sXhslSks7Y%3D Occurrence Handle10.1021/la027031n

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Richards.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kraynov, A., Suchopar, A. & Richards, R. Examination of catalytic behavior and origin of the initial transient period for Pt nanoclusters modified with cinchonidine. Catal Lett 110, 91–99 (2006). https://doi.org/10.1007/s10562-006-0090-2

Download citation

Keywords

  • cinchonidine
  • initial transient period
  • enantioselective hydrogenation
  • ethyl pyruvate
  • platinum
  • nanoclusters
  • desorption