Skip to main content
Log in

Performance of Pt/MgAPO-11 Catalysts in the Hydroisomerization of n-dodecane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

MgAPO-11 molecular sieves with varying Mg contents synthesized by the hydrothermal method were used as supports for bifunctional Pt/MgAPO-11 catalysts. MgAPO-11 molecular sieves and the corresponding catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), temperature-programmed desorption of NH3 (NH3-TPD), differential thermogravimetric (DTG) analysis, temperature-programmed reduction of H2 (H2-TPR), H2 chemisorption and catalytic reaction evaluation. The results indicated that the acidity generated via the substitution of Mg2+ for Al3+ in the framework increased with the Mg content. Acting as acidic components, the MgAPO-11 molecular sieves loaded with Pt were tested in the hydroisomerization of n-dodecane. Optimum isomer yield was obtained over the Pt/MgAPO-11 catalyst that had neither the highest acidity nor the highest Pt loading among the tested catalysts. In fact, the activity and the isomer yield both could attain a maximum on 0.5 wt.% Pt/MgAPO-11 catalysts with differing Mg contents. A lower Mg content resulted in an insufficient acidity, whilst a higher Mg content weakened the dehydrogenation/hydrogenation function of the Pt. These inappropriate balances between the acidic and the metallic functions of the catalysts would lead to low activities and isomer yields. On the other hand, the 0.5 wt.% Pt/MgAPO-11(3) catalyst was found to have a good balance between the acidic and the metallic functions, and thus exhibited both high activity and isomer yield in comparison with the conventional 0.5 wt.% Pt/SAPO-11 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chica A. Corma (1999) J. Catal. 187 167 Occurrence Handle1:CAS:528:DyaK1MXlvFags74%3D Occurrence Handle10.1006/jcat.1999.2601

    Article  CAS  Google Scholar 

  2. J. Weltkamp (1982) Ind. Eng. Chem. Prod. Res. Dev. 21 550 Occurrence Handle10.1021/i300008a008

    Article  Google Scholar 

  3. M.C. Claude J.A. Martens (2000) J. Catal. 190 39 Occurrence Handle1:CAS:528:DC%2BD3cXnsVekuw%3D%3D Occurrence Handle10.1006/jcat.1999.2714

    Article  CAS  Google Scholar 

  4. P.B. Weisz (1962) Adv. Catal. 13 137 Occurrence Handle1:CAS:528:DyaF38Xks1Kgu78%3D Occurrence Handle10.1016/S0360-0564(08)60287-4

    Article  CAS  Google Scholar 

  5. H.L. Coonradt W.E. Garwood (1964) Ind. Eng. Chem. Process Des. Develop. 3 38 Occurrence Handle1:CAS:528:DyaF2cXhsFGrtw%3D%3D Occurrence Handle10.1021/i260009a010

    Article  CAS  Google Scholar 

  6. M. Steijns G. Froment P. Jacobs J. Uytterhoeven J. Weitkamp (1981) Ind. Eng. Chem. Prod. Res. Dev. 20 654 Occurrence Handle1:CAS:528:DyaL3MXlslait7g%3D Occurrence Handle10.1021/i300004a013

    Article  CAS  Google Scholar 

  7. S.J. Miller, US Patent 4 710 485 (1987).

  8. S.J. Miller (1994) Micropor. Mater. 2 439 Occurrence Handle1:CAS:528:DyaK2MXptVSnuw%3D%3D Occurrence Handle10.1016/0927-6513(94)00016-6

    Article  CAS  Google Scholar 

  9. B. Parlitz E. Schreier H.L. Zubowa R. Eckelt E. Lieske G. Lischke R. Fricke (1995) J. Catal. 155 1 Occurrence Handle1:CAS:528:DyaK2MXntFKmu7Y%3D Occurrence Handle10.1006/jcat.1995.1182

    Article  CAS  Google Scholar 

  10. J.M. Campelo F. Lafont J.M. Marinas (1995) J. Catal. 156 11 Occurrence Handle1:CAS:528:DyaK2MXot1Gqtbc%3D Occurrence Handle10.1006/jcat.1995.1226

    Article  CAS  Google Scholar 

  11. P. Mériaudeau V.A. Tuan V.T. Nghiem S.Y. Lai L.N. Hung C. Naccache (1997) J. Catal. 169 55 Occurrence Handle10.1006/jcat.1997.1647

    Article  Google Scholar 

  12. J.M. Campelo F. Lafont J.M. Marinas (1997) Appl. Catal. A 152 53 Occurrence Handle1:CAS:528:DyaK2sXhslOntb0%3D Occurrence Handle10.1016/S0926-860X(96)00347-X

    Article  CAS  Google Scholar 

  13. J.M. Campelo F. Lafont J.M. Marinas (1998) Appl. Catal. A 170 139 Occurrence Handle1:CAS:528:DyaK1cXis1OmsLY%3D Occurrence Handle10.1016/S0926-860X(98)00036-2

    Article  CAS  Google Scholar 

  14. M. Höchtl A. Jentys H. Vinek (2001) Catal. Today 65 171 Occurrence Handle10.1016/S0920-5861(00)00581-2

    Article  Google Scholar 

  15. J. Walendziewski B. Pniak (2003) Appl. Catal. A 250 39 Occurrence Handle1:CAS:528:DC%2BD3sXms1aiurc%3D Occurrence Handle10.1016/S0926-860X(03)00190-X

    Article  CAS  Google Scholar 

  16. A. Vieira M.A. Tovar C. Pfaff B. Méndez C.M. López F.J. Machado J. Goldwasser M.M. Ramírezde Agudelo (1998) J. Catal. 177 60 Occurrence Handle1:CAS:528:DyaK1cXks1ehu78%3D Occurrence Handle10.1006/jcat.1998.2039

    Article  CAS  Google Scholar 

  17. M. Höchtl A. Jentys H. Vinek (1999) Micropor. Mesopor. Mater. 31 271 Occurrence Handle10.1016/S1387-1811(99)00078-5

    Article  Google Scholar 

  18. M. Hartmann S.P. Elangovan (2003) Chem. Ing. Technol. 26 12

    Google Scholar 

  19. S.P. Elangovan M. Hartmann (2003) J. Catal. 217 388 Occurrence Handle1:CAS:528:DC%2BD3sXktVKjsrc%3D

    CAS  Google Scholar 

  20. PCPDFWIN, Version 1.30, 1997, JCPDS-ICDD, File 46-0647.

  21. F. Corà C.R.A. Catlow B. Civalleri R. Orlando (2003) J. Phys. Chem. B 107 11866 Occurrence Handle10.1021/jp035553l Occurrence Handle1:CAS:528:DC%2BD3sXnsl2mtbc%3D

    Article  CAS  Google Scholar 

  22. S.B. Waghmode S.K. Saha Y. Kubota Y. Sugi (2004) J. Catal. 227 425

    Google Scholar 

  23. G. Lischke B. Parlitz U. Lohse E. Shreier R. Fricke (1998) Appl. Catal. A 166 351 Occurrence Handle1:CAS:528:DyaK2sXnvFOksLY%3D Occurrence Handle10.1016/S0926-860X(97)00270-6

    Article  CAS  Google Scholar 

  24. S. Hočevar J. Batista V. Kaučič (1993) J. Catal. 139 351 Occurrence Handle10.1006/jcat.1993.1030

    Article  Google Scholar 

  25. C. Pozas Particlede las R. Lopez-Cordero J.A. Gonzalez-Morales N. Travieso R. Roque-Malherbe (1993) J. Mol. Catal. 83 145 Occurrence Handle10.1016/0304-5102(93)87015-Z

    Article  Google Scholar 

  26. H. Nur H. Hamdan (2001) Mater. Res. Bull. 36 315 Occurrence Handle1:CAS:528:DC%2BD3MXisFOgt74%3D Occurrence Handle10.1016/S0025-5408(00)00472-4

    Article  CAS  Google Scholar 

  27. R. Carson E.M. Cooke J. Dwyer A. Hinchliffe P.J. O’Malley (1989) Stud. Surf. Sci. Catal. 46 39 Occurrence Handle10.1016/S0167-2991(08)60965-9

    Article  Google Scholar 

  28. R. Fernandez M.V. Giotto H.O. Pastore D. Cardoso (2002) Micropor. Mesopor. Mater. 53 135 Occurrence Handle1:CAS:528:DC%2BD38XjtF2ru70%3D Occurrence Handle10.1016/S1387-1811(02)00333-5

    Article  CAS  Google Scholar 

  29. C.M. López M.D. Sousa Y. Campos L. Hernández L. García (2004) Appl. Catal. A 258 195 Occurrence Handle10.1016/j.apcata.2003.09.005 Occurrence Handle1:CAS:528:DC%2BD2cXos1Wqtg%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Xu, Z., Tian, Z. et al. Performance of Pt/MgAPO-11 Catalysts in the Hydroisomerization of n-dodecane. Catal Lett 109, 139–145 (2006). https://doi.org/10.1007/s10562-006-0070-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0070-6

Keywords

Navigation