Catalyst Deactivation in Diborane Decomposition

Both thermal and catalytic decomposition of diborane resulting in borane as the main product were investigated under the pressure and temperature ranges of 2–15 bar and 100–300 °C, respectively over Al2O3 and Pt/Al2O3 in a fixed bed reactor. Catalytic decomposition rate was essentially higher than the thermal decomposition, however the catalyst deactivation was substantial.

This is a preview of subscription content, access via your institution.

References

  1. 1

    InstitutionalAuthorNameBoard on Environmental Studies and Toxicology (2003) Acute Exposure Guideline levels for selected airborne chemicals NumberInSeries3 The National Academic Press Washington D.C.

    Google Scholar 

  2. 2

    Ullmann’s Encyclopedia of Industrial Chemistry. 6th ed., vol. 5 (Wiley-VCH Verlag GmbH & Co, Weinheim, 1993).

  3. 3

    E.H.E. Pietsch R.J. Meier (1954) Gmelins Handbuch der Anorganischen Chemie, Bor Ergänzungsband, System-nummer 13, 8:e Auflage Verlag Chemie GmbH. Weinheim

    Google Scholar 

  4. 4

    J.E. Huheey E.A. Keiter R.L. Keiter (1993) Inorganic Chemistry: Principles of Structure and Reactivity EditionNumber4 HarperCollins College Publishers New York

    Google Scholar 

  5. 5

    N.N. Greenwood R. Greatrex (1987) Pure Apple Chem. 59 857 Occurrence Handle1:CAS:528:DyaL1cXislCmsw%3D%3D

    CAS  Google Scholar 

  6. 6

    Y. Shirai, S.-K. Lee, S. Miyoshi and T. Ohmi, Proceedings – Institute of Environmental Sciences 41(Contamination Control) (1995) 17.

    Google Scholar 

  7. 7

    R.M. Desrosiers D.W. Greve A.J. Gellman (1997) J. Vac. Sci. Technol. A: Vac. Surfaces Films 15 2181 Occurrence Handle1:CAS:528:DyaK2sXkvVans7Y%3D

    CAS  Google Scholar 

  8. 8

    J.A. Rodriguez C.M. Truong J.S. Corneille D.W. Goodman (1992) J. Phys. Chem. 96 334 Occurrence Handle1:CAS:528:DyaK38Xks1yisw%3D%3D

    CAS  Google Scholar 

  9. 9

    M.V. Mathieu B. Imelik (1962) J. Chim. Phys. Phys. Chim. Biol. 59 1189 Occurrence Handle1:CAS:528:DyaF3sXlslyitg%3D%3D

    CAS  Google Scholar 

  10. 10

    J.J. Fripiat M. Tongelen Particlevan (1966) J. Catal. 5 158 Occurrence Handle10.1016/S0021-9517(66)80136-7 Occurrence Handle1:CAS:528:DyaF28XmtlOjsQ%3D%3D

    Article  CAS  Google Scholar 

  11. 11

    H.G. Weiss J.A. Knight I. Shapiro (1959) J. Am. Chem. Soc. 81 1826 Occurrence Handle1:CAS:528:DyaG1MXotFamtQ%3D%3D

    CAS  Google Scholar 

  12. 12

    R.B. Beckmann, Catalytic Pyrolysis of Diborane. United States Department of Commerce, Office of Technical Services, PB Report (1957), 149–191.

  13. 13

    A.I. Mashcenko (1974) Kinetika i Kataliz 15 1015

    Google Scholar 

  14. 14

    J. Bandiera C. Naccache M.V. Mathieu (1969) Comptes Rendus des Séances de l’ Académie des Sciences, Serie C. Sciences Chimiques 268 901 Occurrence Handle1:CAS:528:DyaF1MXktlGlsrY%3D

    CAS  Google Scholar 

  15. 15

    T.B. Fryberger J.L. Grant P.C. Stair (1987) Langmuir 3 1015 Occurrence Handle10.1021/la00078a024 Occurrence Handle1:CAS:528:DyaL2sXmtVGlur0%3D

    Article  CAS  Google Scholar 

  16. 16

    NIST Chemistry WebBook (http://webbook.nist.gov/chemistry).

  17. 17

    Brooks, Mass flow controller model 5850 E, Brooks Instrument Rosemount, 1992.

  18. 18

    J.K. Bragg L.V. McCarty F.J. Norton (1951) J. Am. Chem. Soc. 73 2134 Occurrence Handle10.1021/ja01149a066 Occurrence Handle1:CAS:528:DyaG3MXktlCrtQ%3D%3D

    Article  CAS  Google Scholar 

  19. 19

    T.P. Fehlner W.S. Koski (1964) J. Am. Chem. Soc. 86 1012 Occurrence Handle1:CAS:528:DyaF2cXlvVamsg%3D%3D

    CAS  Google Scholar 

  20. 20

    R. Klein A. Bliss L. Schoen H.G. Nadeau (1961) J. Am. Chem. Soc. 83 4131 Occurrence Handle10.1021/ja01481a006 Occurrence Handle1:CAS:528:DyaF38XksVWjsrs%3D

    Article  CAS  Google Scholar 

  21. 21

    L.V. McCarty P.A. Di Giorgio (1951) J. Am. Chem. Soc. 73 3138 Occurrence Handle10.1021/ja01151a041 Occurrence Handle1:CAS:528:DyaG3MXlt1CktQ%3D%3D

    Article  CAS  Google Scholar 

  22. 22

    R. Greatrex N.N. Greenwood S.M. Lucas (1989) J. Am. Chem. Soc. 111 8721 Occurrence Handle10.1021/ja00205a024 Occurrence Handle1:CAS:528:DyaL1MXmt1SisL4%3D

    Article  CAS  Google Scholar 

  23. 23

    L.H. Long (1970) J. Inorg. Nucl. Chem. 32 1097 Occurrence Handle10.1016/0022-1902(70)80104-X Occurrence Handle1:CAS:528:DyaE3cXktVOktrs%3D

    Article  CAS  Google Scholar 

  24. 24

    R.P. Clarke R.N. Pease (1951) J. Am. Chem. Soc. 73 2132 Occurrence Handle10.1021/ja01149a065 Occurrence Handle1:CAS:528:DyaG3MXktlCrtA%3D%3D

    Article  CAS  Google Scholar 

  25. 25

    J.F. Stanton W.N. Lipscomb R.J. Bartlett (1989) J. Am. Chem. Soc. 111 5165 Occurrence Handle1:CAS:528:DyaL1MXkt12jtr0%3D

    CAS  Google Scholar 

  26. 26

    J.F. Stanton W.N. Lipscomb R.J. Bartlett (1989) J. Am. Chem. Soc. 111 5173 Occurrence Handle1:CAS:528:DyaL1MXkt1yrsbs%3D

    CAS  Google Scholar 

  27. 27

    R. Greatrex N.N. Greenwood S. Waterworth (1988) Chem. Comm. 14 925

    Google Scholar 

  28. 28

    A.B. Burg H.I. Schlesinger (1933) J. Am. Chem. Soc. 55 4009

    Google Scholar 

  29. 29

    H.C. Beachell J.F. Haugh (1958) J. Am. Chem. Soc. 80 2939 Occurrence Handle1:CAS:528:DyaG1cXpsFyhsw%3D%3D

    CAS  Google Scholar 

  30. 30

    B. Siegel J.L. Mack (1958) J. Phys. Chem. 62 373 Occurrence Handle10.1021/j150561a042 Occurrence Handle1:CAS:528:DyaG1cXptFyisg%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu. Murzin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Söderlund, M., Mäki-Arvela, P., Eränen, K. et al. Catalyst Deactivation in Diborane Decomposition. Catal Lett 105, 191–202 (2005). https://doi.org/10.1007/s10562-005-8690-9

Download citation

Key words

  • diborane
  • catalytic decomposition
  • deactivation
  • boron hydrides