Skip to main content
Log in

In Situ MRI Study of 1-octene Isomerisation and Hydrogenation within a Trickle-bed Reactor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

13C DEPT-MRI is used to provide the first spatial mapping of alkene isomerisation and hydrogenation during an alkene hydrogenation reaction occurring within a trickle-bed reactor. The implementation of a pulse sequence combining the spatial resolution of a magnetic resonance imaging (MRI) pulse sequence with a 13C DEPT magnetic resonance spectroscopy pulse sequence enables spatially resolved 13C spectra to be recorded of natural abundance 13C species. Observation of the 13C nucleus, which has a much larger chemical shift range than the 1H nucleus, provides spectra from which direct identification of the products of isomerisation and hydrogenation is achieved. This technique is illustrated with respect to the hydrogenation of 1-octene over a 1 wt% Pd/Al2O3 catalyst. In this preliminary study we demonstrate the ability of this technique to identify the effect of changing the hydrogen flow rate on the evolution of isomerisation and hydrogenation processes occurring along the length of the bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Sederman M.L. Johns P. Alexander L.F. Gladden (1998) Chem. Eng. Sci. 53 2117 Occurrence Handle10.1016/S0009-2509(98)00059-1

    Article  Google Scholar 

  2. K.J. Packer (1996) Top. Catal. 3 249

    Google Scholar 

  3. J.F. Haw (1999) Top. Catal. 8 81 Occurrence Handle10.1023/A:1019140506645

    Article  Google Scholar 

  4. M.P. Hollewand L.F. Gladden (1995) Chem. Eng. Sci. 50 309 Occurrence Handle10.1016/0009-2509(94)00218-G

    Article  Google Scholar 

  5. M.P. Hollewand L.F. Gladden (1995) Chem. Eng. Sci. 50 327 Occurrence Handle10.1016/0009-2509(94)00219-H

    Article  Google Scholar 

  6. I.V. Koptyug V.B. Fenelonov L.Y. Khitrina R.Z. Sagdeev V.N. Parmon (1998) J. Phys. Chem. B 102 3090 Occurrence Handle10.1021/jp9730914

    Article  Google Scholar 

  7. I.V. Koptyug L.Y. Khitrina Y.I. Arsitov M.M. Tokarev K.T. Iskakov V.N. Parmon R.Z. Sagdeev (2000) J. Phys. Chem. B 104 1695 Occurrence Handle10.1021/jp9922763

    Article  Google Scholar 

  8. I.V. Koptyug A.V. Kulikov A.A. Lysova V.A. Kirillov V.N. Parmon R.Z. Sagdeev (2002) J. Am. Chem. Soc. 124 9684

    Google Scholar 

  9. K.Y. Cheah P. Chiaranussati M.P. Hollewand L.F. Gladden (1994) Appl. Catal. A 115 147 Occurrence Handle10.1016/0926-860X(94)80384-6

    Article  Google Scholar 

  10. J.-L. Bonardet T. Domeniconi P. N’Gokoli-Kékélé M.-A. Spinguel-Huet J. Fraissard (1999) Langmuir 15 5836 Occurrence Handle10.1021/la981308v

    Article  Google Scholar 

  11. N.-K. Bar F. Bauer D.M. Ruthven B. Balcom (2002) J. Catal. 208 224 Occurrence Handle10.1006/jcat.2002.3565

    Article  Google Scholar 

  12. E.H.L. Yuen A.J. Sederman L.F. Gladden (2002) Appl. Catal. A 232 29 Occurrence Handle10.1016/S0926-860X(02)00064-9

    Article  Google Scholar 

  13. I.V. Koptyug A.A. Lysova A.V. Kulikov V.A. Kirilov V.N. Parmon R.Z. Sagdeev (2004) Appl. Catal. A 267 143 Occurrence Handle10.1016/j.apcata.2004.02.040

    Article  Google Scholar 

  14. B.S. Akpa, M.D. Mantle, A.J. Sederman and L.F. Gladden, Chem. Commun. (2005) 2741.

  15. A. Molnar A. Sarkany M. Varga (2001) J. Mol. Catal. A 173 185 Occurrence Handle10.1016/S1381-1169(01)00150-9

    Article  Google Scholar 

  16. T.A. Nijhuis F.M. Dautzenberg J.A. Moulijn (2003) Chem. Eng. Sci. 58 1113 Occurrence Handle10.1016/S0009-2509(02)00547-X

    Article  Google Scholar 

  17. M. Bartok G. Szollosi A. Mastalir I. Dekany (1999) J. Mol. Catal. A 139 227 Occurrence Handle10.1016/S1381-1169(98)00196-4

    Article  Google Scholar 

  18. C. Liu Y. Xu S. Liao D. Yu (1999) J. Mol. Catal. A 149 119 Occurrence Handle10.1016/S1381-1169(99)00146-6

    Article  Google Scholar 

  19. H.A. Smits A. Stankiewicz W. Glasz T.H.A. Fogl J.A. Moulijn (1996) Chem. Eng. Sci. 51 3019 Occurrence Handle10.1016/0009-2509(96)00191-1

    Article  Google Scholar 

  20. B. Battsengel L. Datsevich A. Jess (2002) Chem. Eng. Technol. 25 621 Occurrence Handle10.1002/1521-4125(200206)25:6<621::AID-CEAT621>3.0.CO;2-4

    Article  Google Scholar 

  21. M.R. Bendall D.M. Doddrell D.T. Pegg (1981) J. Am. Chem. Soc. 103 4603

    Google Scholar 

  22. H.N. Yeung S.D. Swanson (1989) J. Magn. Reson. 83 183

    Google Scholar 

  23. J. Hennig A. Nauerth H. Friedburg (1986) Magn. Reson. Med. 3 823 Occurrence Handle3821461

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sederman, A., Mantle, M., Dunckley, C. et al. In Situ MRI Study of 1-octene Isomerisation and Hydrogenation within a Trickle-bed Reactor. Catal Lett 103, 1–8 (2005). https://doi.org/10.1007/s10562-005-7522-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7522-2

Key words:

Navigation