Skip to main content
Log in

Catalytic Reduction of Nitric Oxide by Hydrogen Sulfide Over γ-alumina

  • Published:
Catalysis Letters Aims and scope Submit manuscript

The ability of H2S to reduce NO in a fixed bed reactor using a γ-alumina catalyst was studied with the objective of generating new methods for conversion of NO to N2. Compared to the homogenous reaction of NO with H2S, the catalyzed reaction showed improved conversions of NO to N2. Using a gas space velocity of 1000  h−1 and a feed of 1% NO and 1% H2S in argon, it was found that the conversion of NO to N2 was complete at 800 °C. This result compared to a 38% conversion of NO to N2 for the homogeneous gas phase reaction at 800 °C. At temperatures below 800 °C, a short fall in the nitrogen balance was discovered when the γ-alumina was employed as a catalyst. This discrepancy was explained by conversion of NO to NH3 and subsequent reaction of the NH3 with any SO2 in the system to form ammonium sulfur oxy-anion salts. This suggestion is supported by the finding that when larger amounts of H2S were used relative to NO, more NH3 was formed together in tandem with lower N2 mass balances. Several reaction pathways have been proposed for the catalytic reduction of NO by H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Henry G.W. Heinke (1989) Environmental Science and Engineering Prentice-Hall, Englewood Cliff NJ

    Google Scholar 

  2. G. Busca L. Lietti G. Ramis F. Berti (1998) Appl. Catal. B: Environ. 18 1 Occurrence Handle10.1016/S0926-3373(98)00040-X

    Article  Google Scholar 

  3. A.A. Nikolopoulos E.S. Stergioula E.A. Efthimiadis I.A. Vasalos (1999) Catal. Today 54 439 Occurrence Handle10.1016/S0920-5861(99)00207-2

    Article  Google Scholar 

  4. H. Hamada (1994) Catal. Today 22 21 Occurrence Handle10.1016/0920-5861(94)80090-1

    Article  Google Scholar 

  5. M. Richter U. Bentrup R. Eckelt M. Schneider M.-M. Pohl R. Fricke (2004) Appl. Catal. B: Environ 51 261 Occurrence Handle10.1016/j.apcatb.2004.02.015

    Article  Google Scholar 

  6. T.N. Angelidis N. Kruse (2001) Appl. Catal. B: Environ. 34 201 Occurrence Handle10.1016/S0926-3373(01)00215-6

    Article  Google Scholar 

  7. M. Machida S. Ikeda D. Kurogi T. Kijima (2001) Appl. Catal. B: Environ 35 107 Occurrence Handle10.1016/S0926-3373(01)00243-0

    Article  Google Scholar 

  8. M.P. Korsh F.P. Ivanoskii (1956) Zhur. Priklad. Khim. 29 1561

    Google Scholar 

  9. M.P. Korsh F.P. Ivanoskii (1958) Zhur. Priklad. Khim 31 980

    Google Scholar 

  10. P. Forzatti (2001) Appl. Catal. A: Gen 222 221 Occurrence Handle10.1016/S0926-860X(01)00832-8

    Article  Google Scholar 

  11. G. Xie Z. Liu Z. Zhu Q. Liu J. Ge Z. Huang (2004) J. Catal. 224 36 Occurrence Handle10.1016/j.jcat.2004.02.015

    Article  Google Scholar 

  12. S.M. Jung P. Grande (2002) Appl. Catal. B: Environ. 36 325 Occurrence Handle10.1016/S0926-3373(01)00314-9

    Article  Google Scholar 

  13. M. Haneda Y. Kintaichi N. Bion H. Hamada (2003) Appl. Catal. B: Environ 42 157 Occurrence Handle10.1016/S0926-3373(02)00215-1

    Article  Google Scholar 

  14. E. Seker E. Gulari (2000) J. Catal. 194 4 Occurrence Handle10.1006/jcat.2000.2949

    Article  Google Scholar 

  15. K. Shimizu H. Kawabata A. Satsuma T. Hattori (1999) J. Phys. Chem. B 103 5240 Occurrence Handle10.1021/jp984770x

    Article  Google Scholar 

  16. K. Sohlberg S. Pennycook S. Pantelides (1999) J. Am. Chem. Soc 121 7492

    Google Scholar 

  17. S.-J. Huang A.B. Walters M.A. Vannice (1997) J. Catal. 173 229 Occurrence Handle10.1006/jcat.1997.1911

    Article  Google Scholar 

  18. T.M. Salama R.O. Ohnishi T. Shido M. Ichikawa (1996) J. Catal. 162 169 Occurrence Handle10.1006/jcat.1996.0274

    Article  Google Scholar 

  19. K. Tomishige K. Asakura Y. Iwasawa (1995) J. Catal. 157 472 Occurrence Handle10.1006/jcat.1995.1312

    Article  Google Scholar 

  20. M. Koebel M. Elsener G. Madia (2001) Ind. Eng. Chem. Res. 40 52 Occurrence Handle10.1021/ie000551y

    Article  Google Scholar 

  21. Z. Huang Z. Zhu Z. Liu Q. Liu (2003) J. Catal. 214 213 Occurrence Handle10.1016/S0021-9517(02)00157-4

    Article  Google Scholar 

  22. P.D. Clark N.I. Dowling M. Huang O. Okemona W.J.S. Kijlstra (2002) App Catal, A: Gen 235 61

    Google Scholar 

  23. T. Yoshinari K. Sato M. Haneda Y. Kintaichi H. Hamada (2003) Appl. Catal. B: Environ. 41 157 Occurrence Handle10.1016/S0926-3373(02)00208-4

    Article  Google Scholar 

  24. N. Macleod R. Cropley J. Keel R. Lambert (2004) J. Catal. 221 20 Occurrence Handle10.1016/j.jcat.2003.07.005

    Article  Google Scholar 

  25. P.D. Clark N.I. Dowling M. Huang (2004) Appl. Catal. A: Gen. 274 219 Occurrence Handle10.1016/j.apcata.2004.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, P.D., Nielsen, A.D. & Dowling, N.I. Catalytic Reduction of Nitric Oxide by Hydrogen Sulfide Over γ-alumina. Catal Lett 104, 73–78 (2005). https://doi.org/10.1007/s10562-005-7439-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7439-9

Keywords

Navigation