Skip to main content
Log in

Study of Partial Oxidative Steam Reforming of Methanol over Cu–ZnO/samaria-doped Ceria Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Partial oxidative steaming reforming of methanol (POSRM) to produce hydrogen selectively for polymer electrolyte membrane fuel cell (PEMFC) powering vehicles was studied over Cu–ZnO/samaria-doped ceria (SDC) catalyst. Compared with Cu–ZnO/α-Al2O3 and Cu–ZnO/γ-Al2O3 catalysts, the Cu–ZnO/SDC catalyst exhibited higher activity for CH3OH conversion and higher selectivity for H2 production in the POSRM reaction. The higher catalytic performance of Cu–ZnO/SDC appears attributable to the support effect of SDC. Effects of reaction temperature, O2/CH3OH and H2O/CH3OH molar ratios on the catalytic performance of Cu–ZnO/SDC were investigated. It has been found that the partial-oxidation nature of the POSRM reaction is increased when O2/CH3OH ratio is increased, and the combustion of methanol and H2 would occur insignificantly in the POSRM over the Cu–ZnO/SDC catalyst. A higher concentration of steam is beneficial to suppress CO formation over the Cu–ZnO/SDC catalyst. Under the experimental conditions of the present work, the O2/CH3OH and H2O/CH3OH molar ratios should be about 0.02 and 1.0–2.0, respectively, in order for Cu–ZnO/SDC to achieve an optimum catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Wild Particlede M.J.F.M. Verhaak (2000) Catal. Today 60 3 Occurrence Handle10.1016/S0920-5861(00)00311-4

    Article  Google Scholar 

  2. R.A. Lemons (1990) J. Power Sources 29 251 Occurrence Handle10.1016/0378-7753(90)80024-8

    Article  Google Scholar 

  3. T.J. Huang S.W. Wang (1986) Appl. Catal. 24 287 Occurrence Handle10.1016/S0166-9834(00)81276-2

    Article  Google Scholar 

  4. T.J. Huang S.L. Chren (1988) Appl. Catal. 40 43 Occurrence Handle10.1016/S0166-9834(00)80424-8

    Article  Google Scholar 

  5. T.J. Huang and C.L. Cheng, Proc. Third ROK/ROC Joint Workshop on Catalysis, Daejeon, Korea, 1985, p. 80

  6. R. Kumar, S. Ahmed, M. Krumpelt and K.M. Myles, Argonne National Laboratory Report, ANL-92/31, Argonne, IL, USA, 1992

  7. S. Murcia-Mascaros R.M. Navarro L. Gomez-Sainero U. Costantino M. Nocchetti J.L.G. Fierro (2001) J. Catal. 198 338 Occurrence Handle10.1006/jcat.2000.3140

    Article  Google Scholar 

  8. S. Velu, K. Suzuki and T. Osaki, Chem. Commun. (1999) 2341.

  9. S. Velu K. Suzuki M. Okazaki M.P. Kapoor T. Osaki F. Ohashi (2000) J. Catal. 194 373 Occurrence Handle10.1006/jcat.2000.2940

    Article  Google Scholar 

  10. J.L.G. Fierro J. Soria J. Sanz J.M. Rojo (1987) J. Solid State Chem 66 154 Occurrence Handle10.1016/0022-4596(87)90230-1

    Article  Google Scholar 

  11. E. Abi-Aad R. Bechara J. Grimblot A. Aboukais (1993) Chem. Mater. 5 793 Occurrence Handle10.1021/cm00030a013

    Article  Google Scholar 

  12. H.C. Yao Y.F. Yu Yao (1984) J. Catal. 86 254 Occurrence Handle10.1016/0021-9517(84)90371-3

    Article  Google Scholar 

  13. J.C. Summers S.A. Ausen (1979) J. Catal. 58 131 Occurrence Handle10.1016/0021-9517(79)90251-3

    Article  Google Scholar 

  14. C.B. Choudhary, H.S. Maiti and E.C. Subbarao, in: Solid Electrolytes and Their Applications, E.C. Subbarao (ed.), (Plenum Press, New York, 1980, p. 47).

  15. J.E. Kubsh, J.S. Rieck and N.D. Spencer, in: Catalysis and Automotive Pollution Control II, A. Crucq (ed.), (Elsevier, Amsterdam, 1991, p. 125).

  16. T.H. Etsell S.N. Flengas (1970) Chem. Rev. 70 339 Occurrence Handle10.1021/cr60265a003

    Article  Google Scholar 

  17. Y. Liu T. Hayakawa K. Suzuki S. Hamakawa (2001) Catal. Commun. 2 195 Occurrence Handle10.1016/S1566-7367(01)00033-4

    Article  Google Scholar 

  18. J. Papavasiliou G. Avgouropoulos T. Ioannides (2004) Catal. Commun. 5 231 Occurrence Handle10.1016/j.catcom.2004.02.009

    Article  Google Scholar 

  19. L. Alejo R. Lago M.A. Pena J.L.G. Fierro (1997) Appl. Catal. A 162 281 Occurrence Handle10.1016/S0926-860X(97)00112-9

    Article  Google Scholar 

  20. J.B. Wang W.-H. Shih T.J. Huang (2000) Appl. Catal. A 203 191 Occurrence Handle10.1016/S0926-860X(00)00484-1

    Article  Google Scholar 

  21. J.B. Wang D.H. Tsai T.J. Huang (2002) J. Catal. 2008 370 Occurrence Handle10.1006/jcat.2002.3580

    Article  Google Scholar 

  22. J.B. Wang S.C. Lin T.J. Huang (2002) Appl. Catal. A 232 107 Occurrence Handle10.1016/S0926-860X(02)00101-1

    Article  Google Scholar 

  23. S. Velu K. Suzuki M.P. Kapoor F. Ohashi T. Osaki (2001) Appl. Catal. A 213 47–63 Occurrence Handle10.1016/S0926-860X(00)00879-6

    Article  Google Scholar 

  24. S. Velu K. Suzuki (2003) Top. Catal. 22 235 Occurrence Handle10.1023/A:1023576020120

    Article  Google Scholar 

  25. J. Agrell K. Hasselbo K. Jansson S.G. Jaras M. Boutonnet (2001) Appl. Catal. A 211 239 Occurrence Handle10.1016/S0926-860X(00)00876-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Jen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.B., Li, CH. & Huang, TJ. Study of Partial Oxidative Steam Reforming of Methanol over Cu–ZnO/samaria-doped Ceria Catalyst. Catal Lett 103, 239–247 (2005). https://doi.org/10.1007/s10562-005-7160-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7160-8

Keywords

Navigation