Skip to main content
Log in

The First Study of SCR of NO x by Acetylene in Excess Oxygen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Acetylene as a reducing agent for the selective catalytic reduction (C2H2-SCR) of NO in the presence of excess oxygen on various Ce-exchanged zeolites was investigated for the first time. Under the conditions of 1600 ppm NO, 800 ppm C2H2, and 9.95 % O2 in He, the Ce-H-ZSM-5 (Si/Al=25) catalyst shows about 83% NO conversion to N2 at the temperatures ranged from 300 to 350 °C. It is followed by the other zeolites in the activity order of Ce-H-Y (Si/Al=2.5), Ce-H-_ (Si/A1=20∼30), and Ce-H-SAPO (Si/Al=34), Ce-H-5A (Si/Al=12). Almost no NO conversion was obtained over Ce-Na-ZSM-5 (Si/Al=25) and Na-ZSM-5 (Si/Al=25) catalyst samples. The Conversion of NO to N2 increased with O2 concentration in the range of 0.1 ∼ 9.95% over the CeH-ZSM-5 (Si/Al=25) catalyst. It is suggested that O2 plays an important role in the C2H2-SCR of NO reaction, by oxidizing NO to NO2 on acid sites in assistant with cerium species of the catalyst. A large amount of CO, which seems to be in proportion with the NO conversion to N2, was produced. Long-term experiments up to 56 h combined with a excursion of the reaction temperature up to 650 °C over the Ce-H-ZSM-5 (Si/A1=25) confirmed the catalyst’s durable performance under the reaction conditions. It is found that the de-NO x activity of Ce-H-ZSM-5 catalyst can be enhanced by the presence of 50 ppm of sulfur dioxide in the dry-feed reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto H. Yahiro Y. Yu-u S. Shundo N. Mizuno (1990) Shokubai(Catalyst) 32 430

    Google Scholar 

  2. W. Held, A. König, T. Richter, and L. Pupper, SAE Paper 900496, 1990.

  3. N. Li A. Wang J. Tang X. Wang D. Liang T. Zhang (2003) Appl Catal. B 43 195 Occurrence Handle10.1016/S0926-3373(02)00301-6

    Article  Google Scholar 

  4. M. Ogura S. Kage T. Shimojo J. Oba M. Hayashi M. Matsukata E. Kikuchi (2002) J. Catal. 211 75

    Google Scholar 

  5. H. Berndt F.-W. Schütze M. Richter T. Sowade W. Grünert (2003) Appl. Catal. B 40 51 Occurrence Handle10.1016/S0926-3373(02)00126-1

    Article  Google Scholar 

  6. K. Shimizu A. Satsuma T. Hattori (1998) Appl. Catal B 16 319 Occurrence Handle10.1016/S0926-3373(97)00088-X

    Article  Google Scholar 

  7. Z. Schay L. Guczi A. Beck I. Nagy V. Samuel S.P. Mirajkar A.V. Ramaswamy G. Pál-Borbély (2002) Catal Today 75 393 Occurrence Handle10.1016/S0920-5861(02)00088-3

    Article  Google Scholar 

  8. M. Haneda Y. Kintaichi H. Hamada (1999) Appl. Catal. B 20 289 Occurrence Handle10.1016/S0926-3373(98)00117-9

    Article  Google Scholar 

  9. G.B.F. Seijger P. Kooten Niekerk Particlevan K. Krishna H.P.A. Calis H. Bekkum Particlevan C.M. Bleek Particlevan den (2003) Appl. Catal. B 40 31 Occurrence Handle10.1016/S0926-3373(02)00128-5

    Article  Google Scholar 

  10. C. Yokoyama M. Misono (1994) Bull. Chem. Soc. Jpn. 67 557

    Google Scholar 

  11. C. Yokoyama M. Misono (1996) Catal J.. 95 160

    Google Scholar 

  12. Z. Li M. Flytzani-Stephanopoulos (1999) J. Catal. 182 313 Occurrence Handle10.1006/jcat.1998.2376

    Article  Google Scholar 

  13. E. Kikuchi K. Yogo (1994) Catal. Today 22 73 Occurrence Handle10.1016/0920-5861(94)80093-6

    Article  Google Scholar 

  14. R. Long R.T. Yang (1998) Catal. Lett. 52 91 Occurrence Handle10.1023/A:1019063218396

    Article  Google Scholar 

  15. S.-C. Shen S. Kawi (2003) Appl. Catal. B 45 63 Occurrence Handle10.1016/S0926-3373(03)00108-5

    Article  Google Scholar 

  16. J.H. Lee J.G. Kimb J.K. Lee J.H. Kim (2003) Catal. Today 87 35 Occurrence Handle10.1016/j.cattod.2003.09.006

    Article  Google Scholar 

  17. S.E. Maisuls L. Lefferts K. Seshan T. Furusawa K. Aika B. Mosqueda-Jimenez M. Smidt J.A. Lercher (2003) Catal. Today 84 139 Occurrence Handle10.1016/S0920-5861(03)00267-0

    Article  Google Scholar 

  18. M.J Jia W.X Zhang T.H Wu (2002) J. Molecular Catalysis A: Chemical 185 151 Occurrence Handle10.1016/S1381-1169(01)00523-4

    Article  Google Scholar 

  19. A.R. Vaccaro G. Mula J. Pérez-Ramirez J.A. Moulijn (2003) Appl. Catal. B 46 687 Occurrence Handle10.1016/S0926-3373(03)00271-6

    Article  Google Scholar 

  20. L.F. Liotta G. Pantaleo A. Macaluso G. Di Carlo G. Deganello (2003) Appl Catal. A 245 167 Occurrence Handle10.1016/S0926-860X(02)00652-X

    Article  Google Scholar 

  21. H.S. Gandhi M. Shelef (1991) Appl. Catal. 77 175 Occurrence Handle10.1016/0166-9834(91)80063-3

    Article  Google Scholar 

  22. T.N. Angelidis S. Christoforou A. Bougiovanni N. Kruse (2002) Appl. Catal. B 39 197 Occurrence Handle10.1016/S0926-3373(02)00086-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xu, Y., Yu, S. et al. The First Study of SCR of NO x by Acetylene in Excess Oxygen. Catal Lett 103, 101–108 (2005). https://doi.org/10.1007/s10562-005-6509-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-6509-3

Keywords

Navigation