Skip to main content
Log in

Solvent-free Oxidation of Primary Alcohols to Aldehydes using Supported Gold Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Supported Au catalysts are investigated for the oxidation of primary alcohols under solvent-free conditions in the absence of base. Three representative primary alcohols have been investigated: benzyl alcohol, octan-1-ol and geraniol using a range of supports for gold nanocrystals prepared using coprecipitation, deposition precipitation and impregnation. For benzyl alcohol and octan-1-ol selective oxidation to the corresponding aldehydes is observed, particularly with Au/CeO2, whereas for more acidic supports, e.g. Fe2O3, subsequent oxidation of the aldehydes to the corresponding acids, forming an ester (benzyl benzoate, octyl octanoate, respectively) by reaction with the alcohol, by a standard acid-catalysed mechanism. Alternatively, the mechanism of ester generation could involve hemiacetal formation between the aldehyde and residual alcohol, followed by direct oxidation to the observed ester. The reaction of geraniol is much more complex and the reaction is carried out in the presence and absence of acids to gain a full understanding of the interplay between oxidation and isomerisation reactions. Comparison with other active catalysts reveals that using Au catalysts in solvent free conditions gives very high turnover frequencies for the synthesis of the aldehydes with 100% selectivity (150 h−1 and 26 h−1 for benzyl alcohol and octan-1-ol, respectively), which are comparable to the best reported to date for these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Hutchings (1985) J. Catal. 96 292 Occurrence Handle10.1016/0021-9517(85)90383-5

    Article  Google Scholar 

  2. B. Nkosi N.J. Coville G.J. Hutchings M.D. Adams J. Friedl F. Wagner (1991) J. Catal. 128 366 Occurrence Handle10.1016/0021-9517(91)90295-F

    Article  Google Scholar 

  3. B. Nkosi M.D. Adams N.J. Coville G.J. Hutchings (1991) J. Catal. 128 378 Occurrence Handle10.1016/0021-9517(91)90296-G

    Article  Google Scholar 

  4. M. Haruta T. Kobayashi H. Sano N. Yamada (1987) Chem. Lett. 4 405

    Google Scholar 

  5. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle10.1016/0021-9517(89)90034-1

    Article  Google Scholar 

  6. G.J. Hutchings (1996) Gold Bull. 29 123

    Google Scholar 

  7. G.C. Bond D.T. Thompson (1999) Catal. Rev.-Sci. Eng. 41 319 Occurrence Handle10.1081/CR-100101171

    Article  Google Scholar 

  8. G.C. Bond D.T. Thompson (2000) Gold Bull. 33 41

    Google Scholar 

  9. M. Haruta (1997) Catal.Today 36 153–166 Occurrence Handle10.1016/S0920-5861(96)00208-8

    Article  Google Scholar 

  10. M. Haruta (2002) CATTECH 6 102 Occurrence Handle10.1023/A:1020181423055

    Article  Google Scholar 

  11. M. Haruta (2004) Gold Bull. 37 27

    Google Scholar 

  12. J.E. Bailie H.A. Abdullah J.A. Anderson C.H. Rochester N.V. Richardson N. Hodge J.G. Zhang A. Burrows C.J. Kiely G.J. Hutchings (2001) Phys. Chem. Chem. Phys. 3 4113 Occurrence Handle10.1039/b103880j

    Article  Google Scholar 

  13. N.A. Hodge C.J. Kiely R. Whyman M.R.H. Siddiqui G.J. Hutchings Q.A. Pankhurst F.E. Wagner R.R. Rajaram S.E. Golunski (2002) Catal. Today 72 133 Occurrence Handle10.1016/S0920-5861(01)00487-4

    Article  Google Scholar 

  14. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle10.1126/science.281.5383.1647 Occurrence Handle9733505

    Article  PubMed  Google Scholar 

  15. M.S. Chen D.W. Goodman (2004) Science 306 252 Occurrence Handle10.1126/science.1102420 Occurrence Handle15331772 Occurrence HandleMR2084512

    Article  PubMed  MathSciNet  Google Scholar 

  16. H.-G. Boyen G. Kästle F. Weigl B. Koslowski G. Dietrich P. Ziemann J.P. Spatz S. Rietmüller T. Hartmann M. Nöller G. Smid M. Garnier P. Oelhafen (2002) Science 297 1533 Occurrence Handle10.1126/science.1076248 Occurrence Handle12202824

    Article  PubMed  Google Scholar 

  17. N. Lopez J.K. Nørskov (2002) J. Am. Chem. Soc. 124 11262 Occurrence Handle10.1021/ja026998a Occurrence Handle12236728

    Article  PubMed  Google Scholar 

  18. Q. Fu H. Saltsburg M. Flytzani-Stephanopoulos (2003) Science 301 935 Occurrence Handle10.1126/science.1085721 Occurrence Handle12843399

    Article  PubMed  Google Scholar 

  19. B.C. Gates J. Guzmann (2002) J. Phys. Chem. B 106 7659 Occurrence Handle10.1021/jp020584m

    Article  Google Scholar 

  20. B.C. Gates J. Guzmann (2003) Angew. Chem. Int. Ed. 42 690 Occurrence Handle10.1002/anie.200385981

    Article  Google Scholar 

  21. S. Carrettin P. Concepcion A. Corma J.M.L. Nieto V.F. Puntes (2004) Angew. Chem. Int. Ed. 43 2538 Occurrence Handle10.1002/anie.200353570

    Article  Google Scholar 

  22. R. Meyer C. Lemaire Sh. K. Shaikutdinov H.-J. Freund (2004) Gold Bull. 37 72

    Google Scholar 

  23. M.B. Cortie (2004) Gold Bull. 37 12

    Google Scholar 

  24. A.S.K. Hashmi (2004) Gold Bull. 37 51

    Google Scholar 

  25. G.J. Hutchings (2004) Gold Bull. 37 37

    Google Scholar 

  26. V. Idakiev Z.-Y. Yuan T. Tabakova B.-L. Su (2005) Appl. Catal. A 281 149 Occurrence Handle10.1016/j.apcata.2004.11.021

    Article  Google Scholar 

  27. G. Jacobs P.M. Patterson L. Williams E. Chenu D. Sparks G. Thomas B.H. Davis (2004) Appl. Catal. A 262 177 Occurrence Handle10.1016/j.apcata.2003.11.025

    Article  Google Scholar 

  28. F. Boccuzzi M. Manzoli J.W. Sobczak D. Andreeva (2004) Appl. Catal. B 49 73 Occurrence Handle10.1016/j.apcatb.2003.11.014

    Article  Google Scholar 

  29. V. Idakiev T. Tabakova Z.-Y. Yuan B.-L. Su (2004) Appl. Catal. A 270 135 Occurrence Handle10.1016/j.apcata.2004.04.030

    Article  Google Scholar 

  30. Q. Fu W. Deng H. Saltsburg M. Flytzani-Stephanopoulos (2005) Appl. Catal. B 56 57 Occurrence Handle10.1016/j.apcatb.2004.07.015

    Article  Google Scholar 

  31. C.H. Kim L.T. Thompson (2005) J. Catal. 230 66 Occurrence Handle10.1016/j.jcat.2004.10.004

    Article  Google Scholar 

  32. C. Rhodes G.J. Hutchings A.M. Ward (1995) Catal. Today 23 43 Occurrence Handle10.1016/0920-5861(94)00135-O

    Article  Google Scholar 

  33. T. Hayashi K. Tanaka M. Haruta (1998) J. Catal. 178 566 Occurrence Handle10.1006/jcat.1998.2157

    Article  Google Scholar 

  34. T.A. Nijhuis B.J. Huizinga M. Makkee J.A. Moulijn (1999) Ind. Eng. Chem. Res. 38 884 Occurrence Handle10.1021/ie980494x

    Article  Google Scholar 

  35. E.E. Stangland K.B. Stavens R.P. Andres N.W. Delgass (2000) J. Catal. 199 332 Occurrence Handle10.1006/jcat.1999.2809

    Article  Google Scholar 

  36. A. Zwijnenburg M. Saleh M. Makkee J.A. Moulijn (2002) Catal. Today 72 59 Occurrence Handle10.1016/S0920-5861(01)00478-3

    Article  Google Scholar 

  37. A.K. Sinha S. Seelan S. Tsubota M. Haruta (2004) Angew. Chem. Int. Ed. 43 1546 Occurrence Handle10.1002/anie.200352900

    Article  Google Scholar 

  38. R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and J. Suo, Chem. Commun. (2004) 904

  39. Y.-J. Xu, P. Landon, D. Enache, A.F. Carley and G. J. Hutchings, Catal. Lett. in press

  40. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely and G.J. Hutchings, Chem. Commun. (2002) 2058

  41. P. Landon P.J. Collier A.F. Carley D. Chadwick A.J. Papworth A. Burrows C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phys. 5 1917 Occurrence Handle10.1039/b211338b

    Article  Google Scholar 

  42. L. Prati M. Rossi (1998) J. Catal. 176 552 Occurrence Handle10.1006/jcat.1998.2078

    Article  Google Scholar 

  43. F. Porta L. Prati M. Rossi S. Colluccia G. Martra (2000) Catal. Today 61 165 Occurrence Handle10.1016/S0920-5861(00)00370-9

    Article  Google Scholar 

  44. C. Bianchi F. Porta L. Prati M. Rossi (2000) Top. Catal. 13 231 Occurrence Handle10.1023/A:1009065812889

    Article  Google Scholar 

  45. L. Prati (1999) Gold Bull. 32 96

    Google Scholar 

  46. S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G.J. Hutchings, Chem. Commun. (2002) 696

  47. S. Carretin P. McMorn P. Johnston K. Griffin C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phys. 5 1329 Occurrence Handle10.1039/b212047j

    Article  Google Scholar 

  48. N. Dimitratos F. Porta L. Prati A. Villa (2005) Catal. Lett. 99 181 Occurrence Handle10.1007/s10562-005-2114-8

    Article  Google Scholar 

  49. M. Benson P. Gallezot (2000) Catal. Today 57 127 Occurrence Handle10.1016/S0920-5861(99)00315-6

    Article  Google Scholar 

  50. R.A. Sheldon (1997) Stud. Surf. Sci. Catal. 110 151

    Google Scholar 

  51. K. Mori T. Hara T. Mizugaki K. Ebitani K. Kaneda (2004) J. Am. Chem. Soc. 126 10657 Occurrence Handle10.1021/ja0488683 Occurrence Handle15327324

    Article  PubMed  Google Scholar 

  52. K. Yamaguchi N. Mizuno (2002) Angew. Chem. Int. Ed. 41 7179 Occurrence Handle10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enache, D.I., Knight, D.W. & Hutchings, G.J. Solvent-free Oxidation of Primary Alcohols to Aldehydes using Supported Gold Catalysts. Catal Lett 103, 43–52 (2005). https://doi.org/10.1007/s10562-005-6501-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-6501-y

Keywords

Navigation