Skip to main content
Log in

Nanometric La1−xK x MnO3 Perovskite-type oxides – highly active catalysts for the combustion of diesel soot particle under loose contact conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The La1−xK x MnO3 perovskite-type oxides whose sizes were in nanometric range were prepared by the citric acid-ligated method. The structures of these perovskite-type oxides were examined by XRD and FT-IR. The catalytic activity for the combustion of soot particulate was evaluated by a technique of the temperature-programmed reaction. In the LaMnO3 catalyst, the partial substitution of K for La at A-site enhanced the catalytic activity for the combustion of soot particle. In the La1−xK x MnO3 catalysts, the combustion temperature of soot particle decreases with increasing x values. The La1−xK x MnO3 oxides with the substitution quantity between x=0.20 and x=0.25 are good candidate catalysts for the soot particle removal reaction, and the combustion temperature of soot particle is between 285 and 430 °C when the contact of catalysts and soot is loose, and their catalytic activities for the combustion of soot particle are as good as supported Pt catalysts, which is the best catalyst system so far reported for soot combustion under loose contact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dernaika D. Uner (2003) Appl. Catal. B 40 219 Occurrence Handle10.1016/S0926-3373(02)00152-2

    Article  Google Scholar 

  2. P. Li B. Zhu R. Wang (1995) Chinese Natural Gas Chim. Eng. 20 18

    Google Scholar 

  3. B.A.A.L. van Setten M. Makkee J.A. Moulijn (2001) Catal. Rev. Sci. Eng. 43 489 Occurrence Handle10.1081/CR-120001810

    Article  Google Scholar 

  4. J.P.A. Neeft M. Michiel A. Jacob (1996) Appl. Catal. B 8 57 Occurrence Handle10.1016/0926-3373(95)00057-7

    Article  Google Scholar 

  5. Z. Zhao A. Obuchi J. Oi-Uchisawa A. Ogata S. Kushiyama (1998) Chem. Lett. 4 367 Occurrence Handle10.1246/cl.1998.367

    Article  Google Scholar 

  6. C. Badini G. saracco V. Serra V. Specchia (1998) Appl. Catal. B 18 137 Occurrence Handle10.1016/S0926-3373(98)00038-1

    Article  Google Scholar 

  7. J.P.A. Neeft W. Schipper G. Mul M. Makkee J.A. Moulijn (1997) Appl. Catal. B 11 365 Occurrence Handle10.1016/S0926-3373(96)00052-5

    Article  Google Scholar 

  8. J. Oi-Uchishawa S.D. Wang T. Nanba A. Ohi A. Obuchi (2003) Appl. Catal. B 44 207 Occurrence Handle10.1016/S0926-3373(03)00055-9

    Article  Google Scholar 

  9. J. Oi-Uchishawa A. Obuchi R. Enomoto J.Y. Xu T. Nanba S.T. Liu S. Kushiyama (2001) Appl. Catal. B 32 257 Occurrence Handle10.1016/S0926-3373(01)00150-3

    Article  Google Scholar 

  10. J. Oi-Uchishawa A. Obuchi Ryuji S.D. Wang T. Nanba A. Ohi (2003) Appl. Catal. B 43 117 Occurrence Handle10.1016/S0926-3373(02)00296-5

    Article  Google Scholar 

  11. Y. Teraoka K. Nakano S. Kagawa W.F. Shangguan (1995) Appl. Catal. B 5 L181 Occurrence Handle10.1016/0926-3373(94)00059-X

    Article  Google Scholar 

  12. Y. Teraoka K. Nakano W.F. Shangguan S. Kagawa (1996) Catal. Today 27 107 Occurrence Handle10.1016/0920-5861(95)00177-8

    Article  Google Scholar 

  13. W.F. Shangguan Y. Teraoka S. Kagawa (1998) Appl. Catal. B 16 149 Occurrence Handle10.1016/S0926-3373(97)00068-4

    Article  Google Scholar 

  14. S.-S. Hong G.-D. Lee (2000) Catal. Today 63 397 Occurrence Handle10.1016/S0920-5861(00)00484-3

    Article  Google Scholar 

  15. D. Fino P. Fino G. Saracco V. Specchia (2003) Appl. Catal. B 43 243 Occurrence Handle10.1016/S0926-3373(02)00311-9

    Article  Google Scholar 

  16. T. Miyazaki N. Tokabuchi M. Arita M. Inoue I. Mochida (1997) Energy & Fuel 11 832

    Google Scholar 

  17. Y. Teraoka K. Kanada S. Kagawa (2001) Appl. Catal. B 34 73 Occurrence Handle10.1016/S0926-3373(01)00202-8

    Article  Google Scholar 

  18. D. Weng H.M. Ding L.H. Xu Z. Chen X.D. Wu (2001) J. Chinese Rare Earth Society 4 338

    Google Scholar 

  19. M. Chen Y.W. Wang X.M. Zheng (2003) Chinese J. Inorganic Chem. 10 1145

    Google Scholar 

  20. K.B. LiK X.J. Li K.G. Zhu (1997) J. Appl. Phys. 10 6943

    Google Scholar 

  21. J. Oi-Uchishawa A. Obuchi Z. Zhao S. Kushiyama (1998) Appl. Catal. B 18 L183

    Google Scholar 

  22. Z. Zhao X.G. Yang Y. Wu (1995) Chinese Sci. Bulletin 21 1961

    Google Scholar 

  23. Y. Wu T. Wu B.S. Dou C.X. Wang X.F. Xie Z.L. Yu S.R. Fan Z.R. Fan L.C. Wang (1989) J. Catal. 120 88

    Google Scholar 

  24. Y. Wu Z. Zhao Y. Liu X.G. Yang (2000) J. Molecular Catal. A 155 89

    Google Scholar 

  25. Z. Zhao X. Yang Y. Wu (1996) Appl. Catal. B 8 281

    Google Scholar 

  26. H. Falcon M.J. Martinez-Lope J.A. Alonso J.L.G. Fierro (2003) Appl. Catal. B 26 131

    Google Scholar 

  27. F. Debora F. Paolo S. Guido S. Vito (2003) Appl. Catal. B 43 243 Occurrence Handle10.1016/S0926-3373(02)00311-9

    Article  Google Scholar 

  28. B.R. Stanmore J.F. Brilhac P. Gilot (2001) Carbon 39 2247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhao, Z., Xu, Cm. et al. Nanometric La1−xK x MnO3 Perovskite-type oxides – highly active catalysts for the combustion of diesel soot particle under loose contact conditions. Catal Lett 102, 251–256 (2005). https://doi.org/10.1007/s10562-005-5864-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-5864-4

Key words:

Navigation