Skip to main content
Log in

Effect of calcium and potassium on V2O5/ZrO2 catalyst for oxidative dehydrogenation of propane: a comparative study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of calcium and potassium on the physiochemical properties and performance of V2O5/ZrO2 catalyst for oxidative dehydrogenation of propane was studied in the temperature range of 385–400 °C. The vanadia loading was kept constant at 5 VOx/nm2 and the atomic ratio A/V (A=Ca, K) was varied from 0.05 to 0.75. The vanadia surface structure was investigated using X-ray diffraction analysis (XRD), electron paramagnetic resonance (EPR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The redox property of the catalysts was studied by temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) whereas surface acidity was measured by temperature programmed desorption (TPD) of ammonia. Calcium and potassium both interact with the surface V=O and stabilize the +5 oxidation state of vanadium. Interaction between calcium and vanadium was more intense though surface concentration of calcium was lower than that of potassium. For doped catalysts, the activity was lower due to an increase in reduction temperature as well as a lower extent of reduction and increased resistance to undergo redox cycles. On the other hand, removal of surface acidic sites by the dopants increased the propene selectivity. Potassium was more effective in decreasing the activity and increasing the propene selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albrecht G. Wendt G. Lippold A. Adamski K. Dyrek (1997) Solid State Ionics 101–103 909 Occurrence Handle10.1016/S0167-2738(97)00387-1

    Article  Google Scholar 

  2. Y. Toda T. Ohno F. Hatayama H. Miyata (2001) Appl. Catal. A 207 273 Occurrence Handle10.1016/S0926-860X(00)00657-8

    Article  Google Scholar 

  3. Z. Feng W.S. Postula C. Erkey C.V. Philip A. Akgerman R.G. Anthony (1994) J. Catal. 148 84 Occurrence Handle10.1006/jcat.1994.1188

    Article  Google Scholar 

  4. T. Ohno Y. Bunno F. Hatayama Y. Toda H. Miyata (2001) Appl. Catal. B 30 421 Occurrence Handle10.1016/S0926-3373(00)00257-5

    Article  Google Scholar 

  5. M. De D. Kunzru (2004) Catal. Lett. 96 33 Occurrence Handle10.1023/B:CATL.0000029526.50161.3e

    Article  Google Scholar 

  6. H. Toraya M. Yoshimura S. Somiya (1984) J. Am. Ceram. Soc. 67 C119

    Google Scholar 

  7. G.K. Chuah S. Jaenicke (1997) Appl. Catal. A 163 261 Occurrence Handle10.1016/S0926-860X(97)00103-8

    Article  Google Scholar 

  8. E.E. Platero M.P. Mentruit (1997) Langmuir 13 3150 Occurrence Handle10.1021/la960789k

    Article  Google Scholar 

  9. A. Khodakov J. Yang S. Su E. Iglesia A.T. Bell (1998) J. Catal. 177 343 Occurrence Handle10.1006/jcat.1998.2143

    Article  Google Scholar 

  10. G.T. Went S.T. Oyama A.T. Bell (1990) J. Phys. Chem. 94 4240 Occurrence Handle10.1021/j100373a067

    Article  Google Scholar 

  11. X. Gao J. Jehng I.E. Wachs (2002) J. Catal. 209 43 Occurrence Handle10.1006/jcat.2002.3635

    Article  Google Scholar 

  12. T. Blasco A. Galli J.M. Lopez Nieto F. Trifiro (1997) J. Catal. 169 203 Occurrence Handle10.1006/jcat.1997.1673

    Article  Google Scholar 

  13. P. Rybarczyk H. Berndt J. Radnik M.M. Pohl O. Buyevskaya M. Baerns A. Brückner (2001) J. Catal. 202 45 Occurrence Handle10.1006/jcat.2001.3251

    Article  Google Scholar 

  14. M. Panizza C. Resini F. Raccoli G. Busca R. Catani S. Rossini (2003) Chem. Eng. J. 93 181

    Google Scholar 

  15. W. Chu T. Echizen Y. Kamiya T. Okuhara (2004) Appl. Cat. A 259 199 Occurrence Handle10.1016/j.apcata.2003.09.041

    Article  Google Scholar 

  16. J. Räty T.A. Pakkanen (2001) Appl. Cat. A 208 169 Occurrence Handle10.1016/S0926-860X(00)00704-3

    Article  Google Scholar 

  17. G. Garcia Cortez J.L.G. Fierro M.A. Baňares (2003) Catal. Today 78 219 Occurrence Handle10.1016/S0920-5861(02)00341-3

    Article  Google Scholar 

  18. E.A. Mamedov V. Cortés Corberán (1995) Appl. Catal. A 127 1 Occurrence Handle10.1016/0926-860X(95)00056-9

    Article  Google Scholar 

  19. D. Creaser B. Andersson R.R. Hudgins P.L. Silveston (1999) Appl. Catal. A 187 147 Occurrence Handle10.1016/S0926-860X(99)00201-X

    Article  Google Scholar 

  20. K. Chen A. Khodakov J. Yang A.T. Bell E. Iglesia (1999) J.␣Catal. 186 325

    Google Scholar 

  21. G. Deo I.E. Wachs (1994) J. Catal. 146 323 Occurrence Handle10.1006/jcat.1994.1071

    Article  Google Scholar 

  22. M.A. Bañares M.V. Martínez-Huerta X. Gao J.L.G. Fierro I.E. Wachs (2000) Catal. Today 61 295 Occurrence Handle10.1016/S0920-5861(00)00388-6

    Article  Google Scholar 

  23. J. Van Hengstum J.G. Van Ommen H. Boseh P.J. Gellings (1983) Appl. Catal. A 8 369 Occurrence Handle10.1016/0166-9834(83)85007-6

    Article  Google Scholar 

  24. S. Anniballi F. Cavani A. Guerrini B. Panzacchi F. Trifirò C. Fumagalli R. Leanza G. Mazzoni (2003) Catal. Today 78 117

    Google Scholar 

  25. A. Lemonidou L. Nalbandian I.A. Vasalos (2000) Catal. Today 61 333

    Google Scholar 

  26. F. Roozeboom M.C. Mittelmeijer- Hazeleger J.A. Moulijn J. Medema V.H.J. de Beer Particlede P.J. Gellings (1980) J. Phys. Chem. 84 2783

    Google Scholar 

  27. S. Varma B.N. Wani N.M. Gupta (2001) Appl. Catal. A 205 295

    Google Scholar 

  28. T. Blasco J.M. Lopez Nieto (1997) Appl. Catal. A 157 117

    Google Scholar 

  29. H.W. Zanthoff M. Lahmer M. Baerns E. Klemm M. Seitz G. Emig (1997) J. Catal. 172 203

    Google Scholar 

  30. M.D. Argyle K. Chen C. Resini C. Krebs A.T. Bell E. Iglesia (2004) J. Phys. Chem. B 108 2345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kunzru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, M., Kunzru, D. Effect of calcium and potassium on V2O5/ZrO2 catalyst for oxidative dehydrogenation of propane: a comparative study. Catal Lett 102, 237–246 (2005). https://doi.org/10.1007/s10562-005-5862-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-5862-6

Keywords

Navigation