Catalysis Letters

, Volume 102, Issue 3–4, pp 153–157 | Cite as

Improved resistance against coke deposition of titania supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane

  • Kazuhiro Takanabe
  • Katsutoshi Nagaoka
  • Ken-ichi Aika
Article

Abstract

The catalytic behavior of bi-metallic Co–Ni/TiO2 catalysts for CO2 reforming of CH4 to synthesis gas was investigated under atmospheric pressure with a particular attention to carbon deposition. The catalysts with optimized Co/Ni ratios showed high catalytic stability towards the reaction with very little amount of deposited carbon at a wide range of reaction temperature (773–1123 K). The results suggest that adjusting of composition of the active metals (Co and Ni) can kinetically control the elementary steps (formation of carbon species and its removal by oxygen species) of CH4/CO2 reaction.

Keywords

cobalt nickel bimetal titania methane CO2 reforming strong resistance to coking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simbeck, D.R., Karp, A.D., Dickenson, R.L. 2001Fuel Process.Technol.71139CrossRefGoogle Scholar
  2. 2.
    Lunsford, J.H. 2000Catal.Today63165CrossRefGoogle Scholar
  3. 3.
    Edwards, J.H., Maitra, A.M. 1995Fuel Process. Technol.42269CrossRefGoogle Scholar
  4. 4.
    Rostrup-Nielsen, J.R. 1984Anderson, J.R.Boudart, M. eds. Catalysis,Science and TechnologySpringer-VerlagBerlinChapter 1Google Scholar
  5. 5.
    Froment, G.F. 2000J. Mol. Catal. A163147Google Scholar
  6. 6.
    Bradford, M.C.J., Vannice, M.A. 1999Catal. Rev. Sci. Eng.411 and literature cited thereinCrossRefGoogle Scholar
  7. 7.
    Ross, J.R.H., Keulen, A.N.J., Hegarty, M.E.S., Seshan, K. 1996Catal. Today30193CrossRefGoogle Scholar
  8. 8.
    Tsang, S.C., Claridge, J.B., Green, M.L.H. 1995Catal. Today233CrossRefGoogle Scholar
  9. 9.
    K. Seshan and J.A. Lercher, in: Carbon Dioxide: Environmental Issues, J. Paul and C. Pradier (eds.), (The Royal Soc. Chem., Cambridge, 1994) 16.Google Scholar
  10. 10.
    K. Nagaoka, K. Takanabe and K. Aika, Chem. Commun. (2002) 1006Google Scholar
  11. 11.
    Nagaoka, K., Takanabe, K., Aika, K. 2003Appl. Catal. A25513CrossRefGoogle Scholar
  12. 12.
    Nagaoka, K., Takanabe, K., Aika, K. 2004Appl. Catal. A268151CrossRefGoogle Scholar
  13. 13.
    Takanabe, K., Nagaoka, K., Aika, K. 2005J. Catal.229609Google Scholar
  14. 14.
    Ruckenstein, E., Wang, H.Y. 2002J. Catal.205289CrossRefGoogle Scholar
  15. 15.
    Klug, H.P., Alexander, L.E. 1974X-ray Diffraction ProceduresWileyNewYorkGoogle Scholar
  16. 16.
    K. Takanabe, K. Nagaoka, K. Nariai and K. Aika, submittedGoogle Scholar
  17. 17.
    Choudhary, T.V., Goodman, D.W. 1999Catal. Lett.5993CrossRefGoogle Scholar
  18. 18.
    Koerts, T., Deelen, M.J.A.G., Santen, R. 1992J. Catal.138101CrossRefGoogle Scholar
  19. 19.
    Chen, Y.-G., Yamazaki, O., Tomishige, K., Fujimoto, K. 1996Catal. Lett.3991CrossRefGoogle Scholar
  20. 20.
    Chen, Y.-G., Tomishige, K., Yokoyama, K., Fujimoto, K. 1997Appl. Catal. A165335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kazuhiro Takanabe
    • 1
  • Katsutoshi Nagaoka
    • 2
    • 3
  • Ken-ichi Aika
    • 1
    • 2
  1. 1.Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyMidori-kuJapan
  2. 2.CRESTJST (Japan Science and Technology Corporation)Japan
  3. 3.Department of Applied Chemistry, Faculty of EngineeringOita UniversityOitaJapan

Personalised recommendations