Catalysis Letters

, Volume 98, Issue 4, pp 259–263 | Cite as

Catalytic Wet Oxidation of H2S to Sulfur on V/MgO Catalyst

  • Eun-Ku Lee
  • Kwang-Deog Jung
  • Oh-Shim Joo
  • Yong-Gun Shul


The V/MgO catalysts with different V2O5 loadings were prepared by impregnating MgO with aqueous vanadyl sulfate solution. All of the catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was observed that the H2S removal capacity with respect to vanadia content increased up to 6 wt%, and then decreased with further increase in vanadia loading. The prepared catalysts had BET surface areas of 11.3 ~ 95.9 m2/g and surface coverages of V2O5 of 0.1 ~ 2.97. The surface coverage calculation of V2O5 suggested that a vanadia addition up to a monomolecular layer on MgO support increased the H2S removal capacity of V/MgO, but the further increase of VOx surface coverage rather decreased that. Raman spectroscopy showed that the small domains of Mg3(VO4)2 could be present on V/MgO with less than 6 wt% vanadia loading. The crystallites of bulk Mg3(VO4)2 and Mg2(V2O7) became evident on V/MgO catalysts with vanadia loading above 15 wt%, which were confirmed by a XRD. The TPR experiments showed that V/MgO catalysts with the loading below 6 wt% V2O5 were more reducible than those above 15 wt% V2O5. It indicated that tetrahedrally coordinated V5+ in well-dispersed Mg3(VO4)2 domains could be the active species in the H2S wet oxidation. The XPS studies indicated that the H2S oxidation with V/MgO could proceed from the redox mechanism (V5+ ↔ V4+) and that V3+ formation, deep reduction, was responsible for the deactivation of V/MgO.

V/MgO catalyst wet oxidation H2surface coverage redox mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. W. Estep, G. T. McBride and J. R. West, West, Advances in Petroleum Chemistry and Refining, Vol. 6, (Interscience, New York, 1962) 315 pp.Google Scholar
  2. [2]
    B. G. Goar, Oil Gas 25 (1975) 96.Google Scholar
  3. [3]
    Anon, Sulfur 20 (1995) 236.Google Scholar
  4. [4]
    P. F. M. T. Van Nisselrooy and J. A. Lagas, Catal. Today 16 (1993) 263.Google Scholar
  5. [5]
    V. I. Marshneva and V. V. Mokrinskii, Kinet. Catal. 29 (1988) 989.Google Scholar
  6. [6]
    R. H. Hass, R. C. Hansford and H. Henning, US patent 4088 (1978) 473, to Union Oil Company.Google Scholar
  7. [7]
    K. T. Li, M. Y. Hyang and W. D. Cheng, Ind. Eng. Chem. Res. 35 (1996) 621.Google Scholar
  8. [8]
    K. T. Li, C. S. Yen and N. S. Shyu, Appl. Catal. A 156 (1997) 117.Google Scholar
  9. [9]
    K. T. Li, M. Y. Hyang and W. D. Cheng, US patent 5653953 (1997), to Tunghai University, Taiwan.Google Scholar
  10. [10]
    M. S. Shin, C. M. Nam, D. W. Park and J. S. Chung, Appl. Catal. A 211 (2001) 213.Google Scholar
  11. [11]
    R. A. Bouyanov, A. M. Tsyboulesky, B. P. Zolotovsky, D. P. Klevtsov and V. I. Mourine, US Patent 5369076 (1994), to Institut de Rcherches de Gas Narurels.Google Scholar
  12. [12]
    R. A. Bouyanov, A. M. Tsyboulesky, B. P. Zolotovsky, D. P. Klevtsov and V. I. Mourine, US Patent 5512258 (1996), to Institut de Rcherches de Gas Narurels.Google Scholar
  13. [13]
    D. A. Dalrymple, T. W. Trofe and D. Leppin, OGJ 23 (1994) 54.Google Scholar
  14. [14]
    M. P. Quinlan and D. Leppin, AIChE Spring National Meeting, New Orleans, 2 (1993).Google Scholar
  15. [15]
    J. E. Johnson, S. J. Tzap, R. E. Kelley and L. P. Laczko, OGJ 22 (1993) 20.Google Scholar
  16. [16]
    W. Kensell and D. Leppinin Proceedings of the 7th GRI Sulsur Recovery Conference, 1995.Google Scholar
  17. [17]
    L. C. Hardison, AIChE Spring National Meeting, New Orleans, 2 April 1993.Google Scholar
  18. [18]
    B. G. Goar and E. Nasato, OGJ 23 (1994) 61.Google Scholar
  19. [19]
    J. B. Lefers, W. T. Koestsier and W. P. M. van Swssij, Chem. Eng. J. 15 (1978) 111.Google Scholar
  20. [20]
    D. W. Newman and S. Lynn, Am. Inst. Chem. Eng. J. 30 (1984) 62.Google Scholar
  21. [21]
    K. D. Jung, O. S. Joo, S. H. Cho and S. H. Han, Appl. Catal., 240 (2001) 213.Google Scholar
  22. [22]
    K. D. Jung, O. S. Joo and C. S. Kim, Catal. Letters 84 (2002) 53.Google Scholar
  23. [23]
    K. D. Jung, Characterization of Fe/MgO for wet catalytic oxidation, ACS meeting, Chicago. Augest 2001.Google Scholar
  24. [24]
    D. S. H. Sam, V. Soenen and J. C. Volta, J. Catal. 123 (1990) 417.Google Scholar
  25. [25]
    P. M. Michalakos, M. C. Kung and H. H. Kung, J. Catal. 140 (1993) 226.Google Scholar
  26. [26]
    A. Khodakov, J. Yang S. Su, E. Iglesia and A. T. Bell, J. Catal. 177 (1998) 343.Google Scholar
  27. [27]
    A. Khodakov, B. Olthof, A. T. Bell and E. Iglesia, J. Catal. 181 (1999) 205.Google Scholar
  28. [28]
    A. Corma, J. M. Lopez Nieto and N. Paredes, J. Catal. 144 (1993) 425.Google Scholar
  29. [29]
    A. Corma, J. M. Lopez Nieto, N. Paredes, A. Dejoz and I. Vasquez, Stud. Surf. Sci. Catal. 82 (1994) 113.Google Scholar
  30. [30]
    F. Roozeboom, M. C. Mitteimeijer-Hazeleger, J. A. Moullin, J. Medema, V. H. J. de Beer and P. J. Gellings, J. Phys. Chem. 84 (1980) 2783.Google Scholar
  31. [31]
    T. Blasco, A. Dejoz, J. M. Lopez Nieto and M. I. Vazquez, J. Catal. 157 (1995) 271.Google Scholar
  32. [32]
    X. Gao, P. Ruiz, Q. Xin, X. Guo and B. Delmon, J. Catal. 148 (1994) 56.Google Scholar
  33. [33]
    M. K. Yurdakoc, R. Haffner and D. Honicke, Mater. Chem. Phys. 44 (1996) 273.Google Scholar
  34. [34]
    G. Deo and I. E. Wachs, J. Phys. Chem. 95 (1991) 5889.Google Scholar
  35. [35]
    P. Concepcion, J. M. Lopez Nieto and U. Perez-Pariente, J. Mol. Catal. A 97 (1995) 173.Google Scholar
  36. [36]
    P. Chanho, A. T. Bell and T. D. Tilley, J. Catal. 206 (2002) 49.Google Scholar
  37. [37]
    N. K. Nag and F. E. Massoth, J. Catal. 124 (1990) 127.Google Scholar
  38. [38]
    H. K. Matralis, M. Ciardelli, M. Ruwet and P. Grange, J. Catal. 157 (1995) 368.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Eun-Ku Lee
    • 1
  • Kwang-Deog Jung
    • 2
  • Oh-Shim Joo
    • 2
  • Yong-Gun Shul
    • 1
  1. 1.Department of Chemical EngineeringYonsei UniversityKorea
  2. 2.Eco-Nano CenterKorea Institute of Science and Technology, P.O. BoxCheongryang, SeoulKorea

Personalised recommendations