Skip to main content
Log in

Bulk and Surface Properties of Dispersed CuO Phases in Relation with Activity of NO x Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesized silicas modified with alumina, titania, and zirconia (about 13% wt) were used as supports for dispersing nanosized CuO phase. All the prepared catalysts, containing about 1 mmolcu gcat -1 possessed high surface areas (230–430 m2gcat -1) and homogeneous coverage of the relevant support, as revealed by SEM-EDS analysis. The nature of the support and its acidity directed the CuO deposition modifying the dimensions of the CuO aggregates and the ratio between highly and scarcely interacting copper species with support, as revealed by complementary analyses. The redox character of the CuO phase was studied realizing cycles of programmed temperature reduction/oxidation (TPR-TPO) which gave the extent of CuO reduction and CuO re-oxidation. Deconvolution of the reduction profiles permitted identifying different copper species which presence depended on the support nature. Attempts were made to individuate relations between the properties of the CuO species and catalytic activity in NO x reduction with ethene (HC-SCR process) in highly oxidant atmosphere. The CuO phase deposited on the most acidic supports showed the best activity and selectivity in the NO x reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Prasad, L. A. Kennedy and E. Ruckenstein, Catal. Rev.-Sci. Eng. 26 (1984) 1.

    Google Scholar 

  2. M. F. M. Zwinkels, S. G. Ja ¨ra ¢ªs, P. G. Menon and T. A. Griffin, Catal. Rev.-Sci. Eng. 35 (1993) 319.

    Google Scholar 

  3. F. Kapteijn, S. Stegenga, N. J. J. Dekker, J. W. Bijsterbosch and J. A. Moulijn, Catal. Today 16 (1993) 273.

    Google Scholar 

  4. H. Hamada, Catal. Today 22 (1994) 21.

    Google Scholar 

  5. K. A. Bethke, M. C. Kung, B. Yang, M. Shah, D. Alt, C. Li and H. H. Kung, Catal. Today 26 (1995) 169.

    Google Scholar 

  6. A. Q. M. Boon, F. van Looij and J. W. Geus, J. Mol. Catal. 75 (1992) 277.

    Google Scholar 

  7. P. Larsson and A. Andersson, J. Catal. 179 (1998) 72.

    Google Scholar 

  8. A. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J. M. Coronado, J. A. Anderson, J. C. Conesa, J. Soria and G. Munuera, J. Catal. 195 (2000) 207.

    Google Scholar 

  9. P. Subbanna, H. Greene and F. Desal, Environ. Sci. Technol. 22 (1998) 557.

    Google Scholar 

  10. U. S. Ozkan, R. F. Kueller and E. Moctezuma, Ind. Eng. Chem. Res. 29 (1990) 1136.

    Google Scholar 

  11. H. Rajesh and U. S. Ozkan, Ind. Eng. Chem. Res. 32 (1993) 1622.

    Google Scholar 

  12. O. V. Komova, A. V. Simakov, L. T. Tzykoza, N. N. Sazonova, A. V. Ushakov, G. B. Barannik and Z. R. Ismagilov, React. Kinet. Catal. Lett. 54 (1995) 361.

    Google Scholar 

  13. G. Centi, C. Nigro, S. Perathoner and G. Stella, Catal. Today 17 (1993) 159.

    Google Scholar 

  14. G. Centi and S. Perathoner, Appl. Catal. A 132 (1995) 179.

    Google Scholar 

  15. A. Dandekar and M. A. Vannice, Appl. Catal. B 22 (1999) 179.

    Google Scholar 

  16. M. Matsuoka, W. Ju, K. Takahashi, H. Yamashita and M. Anpo, J. Phys. Chem. B 104 (2000) 4911.

    Google Scholar 

  17. H. Praliaud, S. Mikhailenko, Z. Chajar and M. Primet, Appl. Catal. B 16 (1998) 359.

    Google Scholar 

  18. F. Radtke, R. A. Koeppel, E. G. Minardi and A. Baiker, J. Catal. 167 (1997) 127.

    Google Scholar 

  19. L. Chen, T. Horiuchi, T. Osaki and T. Mori, Appl. Catal. B 23 (1999) 259.

    Google Scholar 

  20. P. Carniti, A. Gervasini, V. H. Modica and N. Ravasio, Appl. Catal. B 28 (2000) 175.

    Google Scholar 

  21. S. Bennici, A. Gervasini, N. Ravasio and F. Zaccheria, J. Phys. Chem. B 107 (2003) 5168.

    Google Scholar 

  22. J. A. Schwarz, C. Contescu and A. Contescu, Chem. Rev. 95 (1995) 477.

    Google Scholar 

  23. F. Pinna, Catal. Today 41 (1998) 129.

    Google Scholar 

  24. V. Indovina, M. Occhiuzzi, D. Pietrogiacomi and S. Tuti, J. Phys. Chem. B 103 (1999) 9967.

    Google Scholar 

  25. C. Ma ´rquez-Alvarez, I. Rodrý ´guez-Ramos, A. Guerrero-Ruiz, G. L. Haller and M. Ferna ´ndez-Garcý ´a, J. Am. Chem. Soc. 119 (1997) 2905.

    Google Scholar 

  26. J. A. Schwarz, Chem. Rev. 95 (1995) 477.

    Google Scholar 

  27. D. R. Ulrich, Chemtech (1988) 242.

  28. S. Ebener and W. Winter, J. Eur. Ceram. Soc. 16 (1996) 1179.

    Google Scholar 

  29. D. Enache, M. Roy-Auberger, K. Esterle and R. Revel, Colloids Surf. A:Physicochem. Eng. Aspects 220 (2003) 223.

    Google Scholar 

  30. C. Flego, L. Carluccio, C. Rizzo and C. Perego, Catal. Commun. 2 (2001) 43.

    Google Scholar 

  31. A. Carati, G. Ferraris, M. Guidotti, G. Moretti, R. Psaro and C. Rizzo, Catal. Today 77 (2003) 315.

    Google Scholar 

  32. A. Corma, Chem. Rev. 95 (1995) 559.

    Google Scholar 

  33. J. M. Miller and L. J. Lakshmi, Appl. Catal. A 190 (2000) 197.

    Google Scholar 

  34. P. Carniti, A. Gervasini and S. Bennici, J. Phys. Chem., submitted.

  35. E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.

    Google Scholar 

  36. J. H. Sco eld, J. Elect. Spect. Relat. Phenom. 8 (1976) 129.

    Google Scholar 

  37. P. Malet and A. Caballero, J. Chem. Soc., Faraday Trans. 184 (1988) 2369.

    Google Scholar 

  38. K. A. Bethke, M. C. Kung, B. Yang, M. Shah, D. Alt, C. Li and H. H. Kung, Catal. Today 169 (1995) 26.

    Google Scholar 

  39. K. Tanabe in: Solid Acid and Base Catalysts:Catalysis Science and Technology, J. R. Anderson and M. Boudart (eds. ), Vol. 2 (Springer, Berlin, 1981), Ch. 5, p. 231.

    Google Scholar 

  40. J. P. Espino ´s, J. Morales, A. Barranco, A. Caballero, J. P. Holgado and A. R. Gonza ´lez-Elipe, J. Phys. Chem. B 106 (2002) 6291.

    Google Scholar 

  41. A. Auroux, A. Gervasini and C. Guimon, J. Phys. Chem. B 103 (1999) 7195.

    Google Scholar 

  42. A. Auroux, C. Picciau and A. Gervasini in: Porous Materials in Environmentally Friendly Processes, Stud. Surf. Sci. Catal., I. Kiricsi, G. Pail-Borbe ´ly, J. B. Nagy and H. G. Karge (eds), Vol. 125 (Elsevier, Amsterdam, 1999), p. 555.

    Google Scholar 

  43. A. Gervasini, C. Picciau and A. Auroux, Micropor. Mesopor. Mater. 35 (2000) 457.

    Google Scholar 

  44. A. Gervasini and A. Auroux in:12th International Congress on Catalysis, Stud. Surf. Sci. Catal., Vol. 130(B), A. Corma, F. V. Melo, S. Mendioroz and J. L. G. Fierro (eds. ), (Elsevier, Amsterdam, 2000), p. 1253.

    Google Scholar 

  45. A. Gervasini and P. Carniti, Catal. Lett. 84 (2002) 235.

    Google Scholar 

  46. S. Bennici, A. Gervasini and V. Ragaini, Ultrason. Sonochem. 10 (2003) 61.

    Google Scholar 

  47. A. Gervasini, P. Carniti and V. Ragaini, Appl. Catal. B 22 (1999) 201.

    Google Scholar 

  48. H. E. Ries, K. J. Laidler, W. E. Innes, F. G. Ciapetta, C. J. Plank and P. W. Selwood in: Catalysis. Volume I Fundamental Principles (Part I), Paul H. Emmett (ed. ), (Book Division Reinhold Publishing Corporation, New York, 1954)p. 258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennici, S., Carniti, P. & Gervasini, A. Bulk and Surface Properties of Dispersed CuO Phases in Relation with Activity of NO x Reduction. Catalysis Letters 98, 187–194 (2004). https://doi.org/10.1007/s10562-004-8679-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-8679-9

Navigation