Skip to main content
Log in

Low Activation Energy Pathway for the Catalyzed Reduction of Nitrogen Oxides to N2 by Ammonia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A low activation energy pathway for the catalytic reduction of nitrogen oxides to N2, with reductants other than ammonia, consists of two sets of reaction steps. In the first set, part of the NO x is reduced to NH3; in the second set ammonium nitrite, NH4NO2 is formed from this NH3 and NO + NO2. The NH4NO2 thus formed decomposes at ~100 °C to N2 + H2O, even on an inert support, whereas ammonium nitrate, NH4NO3, which is also formed from NH3 and NO2 + O2, (or HNO3), decomposes only at 312 °C yielding mainly N2O. Upon applying Redhead's equations for a first order desorption to the decomposition of ammonium nitrite, an activation energiy of 22.4 is calculated which is consistent with literature data. For the reaction path via ammonium nitrite a consumption ratio of 1/1 for NO and NO2 is predicted and confirmed experimentally by injecting NO into a mixture of NH3 + NO2 flowing over a BaNa/Y catalyst. This leads to a yield increase of one N2 molecule per added molecule of NO. Little N2 is produced from NH3 + NO in the absence of NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Millon, Ann. Chim. Phys. 19 (1847) 255.

    Google Scholar 

  2. B. P. Corenwinder, Ann. Chim. Phys. 26 (1849) 296.

    Google Scholar 

  3. A. Kato, S. Matsuda, T. Kamo, F. Nakajima, H. Kuroda and T. Narita, J. Phys. Chem. 85 (1981) 4099.

    Google Scholar 

  4. G. Tu ¨nter, W. Leeuwen and L. Snepvangers, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 633.

    Google Scholar 

  5. M. Koebel, M. Elsener and G. Madia, Ind. Chem. Eng. Res. 40 (2001) 52.

    Google Scholar 

  6. Q. Sun, Z. X. Gao, H. Y. Chen and W. M. H. Sachtler, J. Catal. 201 (2001) 89.

    Google Scholar 

  7. F. Poignant, J. L. Freysz, M. Daturi, J. Saussey and J. C. Lavalley, 12th Int. Congr. Catal. Stud. Surf. Sci. Catal. 130B (2000) 1487.

    Google Scholar 

  8. H.-Y. Chen, T. Voskoboinikov and W. M. H. Sachtler, J. Catl. 180 (1998) 171 and 186 (1999) 91.

    Google Scholar 

  9. W. Bin, Y.-H. Yeom, E. Weitz and W. M. H. Sachtler, Appl. Catal. B 48 (2004) 125.

    Google Scholar 

  10. Y.-H. Yeom, B. Wen, W. M. H. Sachtler and E. Weitz, J. Phys. Chem. B 108 (2004) 5386.

    Google Scholar 

  11. A. G. Panov, R. G. Tomkym, M. L. Balmer, C. H. F. Peden, A. Malkin and J. W. Hoard, Soc. Autom. Eng. SAE(2001) 01–3513.

  12. P. A. Redhead, Vacuum 12 (1962) 203.

    Google Scholar 

  13. N. Kolarow and B. Popjankow, Sp. Angelow, Monatshefte fu ¨r Chemie 96 (1962) 949.

    Google Scholar 

  14. R. Q. Long, R. T. Yang and R. Chang, Chem. Commun. 5 (2002) 452.

    Google Scholar 

  15. G. Madia, M. Koebel, M. Elsener and A. Wokaun, Ind. Eng. Chem. Res. 41 (2002) 4008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Henao, J., Yeom, Y. et al. Low Activation Energy Pathway for the Catalyzed Reduction of Nitrogen Oxides to N2 by Ammonia. Catalysis Letters 98, 5–9 (2004). https://doi.org/10.1007/s10562-004-6441-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-6441-y

Navigation