Skip to main content
Log in

Effect of the surface area of cobaltic oxide on carbon monoxide oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Various surface area (SBET) of cobaltic oxide (Co3O4) are prepared by different methods, i.e., precipitation–oxidation, impregnation and hydrothermal. The effect of SBET of Co3O4 on the catalytic property toward CO oxidation is investigated. The results indicate that the optimum SBET of Co3O4 could increase the catalytic activity. Characterization of the cobaltic oxide using X-ray diffraction (XRD), N2-adsorption at −196 °C, infrared (IR) and temperature-programmed reduction (TPR) reveals that the increase of SBET on Co3O4 can weaken the bond strength of Co–O and promote more lattice oxygen desorption from Co3O4 to cause the reduction become easy. We conclude that the SBET effect, caused by various prepared methods and refined conditions, are responsible for the activity enhancement of Co3O4. The T50 (the conversion of CO reached 50%) is decreased significantly when the SBET is increased, i.e., PO-R230 > PO-C400 > I-C550 > H-150 ~D-Strem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kim S.K. Shi J.H. White (1980) J. Catal. 61 61

    Google Scholar 

  2. Y.Y. Yao (1984) J. Catal. 89 152

    Google Scholar 

  3. M. Olsbye R. Wendelbo T. Akporiayc (1997) Appl. Catal. A 152 127

    Google Scholar 

  4. F. Severino J. Laine (1983) Ind. Eng. Chem. Prod. Res. Dev. 22 396

    Google Scholar 

  5. W. Liu F.S. Maria (1995) J. Catal. 153 304

    Google Scholar 

  6. J. Jansson (2000) J. Catal. 194 55

    Google Scholar 

  7. J. Jansson A.E.C. Palmqvist E. Fridell M. Skoglundh L.O. Sterlund P. Thormahlen V. Langer (2002) J. Catal. 211 387

    Google Scholar 

  8. H.K. Lin C.B. Wang H.C. Chiu S.H. Chien (2003) Catal. Lett. 86 63

    Google Scholar 

  9. H.K. Lin H.C. Chiu H.C. Tsai S.H. Chien C.B. Wang (2003) Catal. Lett. 88 169

    Google Scholar 

  10. B.A. Sazonov V.V. Popovskii G.K. Boreskov (1968) Kinet. Catal. 9 255

    Google Scholar 

  11. D.S. Lafyatis G.P. Ansell S.C. Bennett J.C. Frost P.J. Millington R.R. Rajaram A.P. Walker T.H. Ballinger (1998) ArticleTitleApplied Catal. B 18 123

    Google Scholar 

  12. G.A. El-Shobaky N.M. Deraz (2001) Mater. Lett. 47 231

    Google Scholar 

  13. N.M. Deraz (2002) Colloids Surf. A 207 197

    Google Scholar 

  14. G.A. El-Shobaky A.M. Ghozza (2004) Mater. Lett. 58 699

    Google Scholar 

  15. H.P. Klug L.E. Alexander (1962) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials Wiley New York 491

    Google Scholar 

  16. C. Spenser D. Schroeder (1974) Phys. Rev. B 9 3658

    Google Scholar 

  17. T. Andrushkevich G. Boreskov V. Popovskii L. Pliasova L. Karakchiev A. Ostankovitch (1968) Kinet. Katal. 6 1244

    Google Scholar 

  18. G. Christoskova M. Stoyanova M. Georgieva D. Mehandjiev (1999) Mater. Chem. and Phys. 60 39

    Google Scholar 

  19. R.N. Singh J.P. Pandey N.K. Singh B. Lal P. Chartier J.F. Koenig (2000) Electrochim. Acta 45 1911

    Google Scholar 

  20. P. Arnoldy J.A. Moulijn (1985) J. Catal. 93 38

    Google Scholar 

  21. M. Voβ D. Borgmann G. Wedler (2002) J. Catal. 212 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Bin Wang or Shu-Hua Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CB., Tang, CW., Gau, SJ. et al. Effect of the surface area of cobaltic oxide on carbon monoxide oxidation. Catal Lett 101, 59–63 (2005). https://doi.org/10.1007/s10562-004-3750-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-3750-0

Keywords

Navigation