Catalysis Letters

, Volume 99, Issue 1–2, pp 97–100 | Cite as

Improvement of Pt/ZrO2 by CeO2 for high pressure CH4/CO2 reforming

  • Katsutoshi Nagaoka
  • Kulathuiyer Seshan
  • Kazuhiro Takanabe
  • Ken-ichi AikaEmail author


CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.


CH4/CO2 reforming Pt/ZrO2 effect of CeO2 stability coke deposition Pt aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bradford, M.C.J., Vannice, M.A. 1999Catal. Rev. Sci. Eng.411Google Scholar
  2. [2]
    Tomishige, K., Himeno, Y., Matsuo, Y., Yoshinaga, Y., Fujimoto, K. 2000Ind. Eng. Chem. Res.391891Google Scholar
  3. [3]
    Nagaoka, K., Okamura, M., Aika, K. 2001Catal. Commun.2255Google Scholar
  4. [4]
    K. Nagaoka, K. Takanabe and K. Aika, Chem. Commun. (2002) 1006.Google Scholar
  5. [5]
    Bitter, J.H., Hally, W., Seshan, K., van Ommen, J.G., Lercher, J.A. 1996Catal. Today29349Google Scholar
  6. [6]
    J.H. Bitter, Ph.D. thesis, University of Twente, (1997)Google Scholar
  7. [7]
    Bitter, J.H., Seshan, K., Lercher, J.A. 1997J. Catal.171279Google Scholar
  8. [8]
    Bitter, J.H., Seshan, K., Lercher, J.A. 1998J. Catal.17693Google Scholar
  9. [9]
    Bitter, H., Seshan, K., Lercher, J.A. 1999J. Catal.183336Google Scholar
  10. [10]
    Nagaoka, K., Seshan, K., Aika, K., Lercher, J.A. 2001J. Catal.19734Google Scholar
  11. [11]
    Wang, S., Li, G.Q. 1998Appl. Catal. B19267Google Scholar
  12. [12]
    Xu, G., Shi, K., Gao, Y., Xu, H., Wei, Y. 1999J. Mol. Catal. A14747Google Scholar
  13. [13]
    Nagaoka, K., Aika, K. 2001Bull. Chem. Soc. Jpn,741841Google Scholar
  14. [14]
    Stagg-Williams, S. M., Noronha, F. B., Fendley, G., Resasco, D.E. 2000J. Catal.194240Google Scholar
  15. [15]
    Noronha, F.B., Fendley, E.C., Soares, R.R., Alvarez, W.E., Resasco, D.E. 2001Chem. Eng. J.8221Google Scholar
  16. [16]
    K. Otshuka, T. Ushiyama and I. Yamanaka, Chem. Lett. (1993)1517.Google Scholar
  17. [17]
    Bradford, M.C.J., Vannice, M.A. 1996Appl. Catal. A14297Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Katsutoshi Nagaoka
    • 1
  • Kulathuiyer Seshan
    • 2
  • Kazuhiro Takanabe
    • 1
  • Ken-ichi Aika
    • 1
    Email author
  1. 1.Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science & EngineeringTokyo Institute of TechnologyYokohamaJapan
  2. 2.Faculty of Chemical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations