Skip to main content

Advertisement

Log in

Stem cell-based therapy as a promising approach in Alzheimer's disease: current perspectives on novel treatment

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a neuronal disorder with insidious onset and slow progression, leading to growing global concern with huge implications for individuals and society. The occurrence of AD has been increased and has become an important health issue throughout the world. In recent years, the care of more than 35 million patients with AD costs over $ 600 billion per year, it is approximately 1 percent of the global Gross Domestic Product. Currently, the therapeutic approach is not effective for neurological deficits especially after the development of these major neurological disorders. The discovery of the technique called cell-based therapy has shown promising results and made important conclusions beyond AD using the stem cells approach. Here we review recent progress on stem cell-based therapy in the context of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appasani K, Appasani RK (eds) (2010) Stem cells & regenerative medicine: from molecular embryology to tissue engineering. Springer Science & Business Media, New Yorks

    Google Scholar 

  • Bagheri-Mohammadi S (2020a) Microglia in Alzheimer's disease: the role of stem cell-microglia interaction in brain homeostasis. Neurochem Res, pp 1–8.

  • Bagheri-Mohammadi S (2020b) Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank, pp 1–14.

  • Bagheri-Mohammadi S, Alani B, Karimian M, Moradian-Tehrani R, Noureddini M (2019a) Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson’s disease therapy. Mol Biol Rep 46:4293–4302

    Article  CAS  PubMed  Google Scholar 

  • Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M (2019b) Stem cell-based therapy for Parkinson’s disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 234:1326–1335

    Article  CAS  PubMed  Google Scholar 

  • Behrstock S, Ebert AD, Klein S, Schmitt M, Moore JM, Svendsen CN (2008) Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF. Cell Transplant 17:753–762

    Article  PubMed  Google Scholar 

  • Birch AM, McGarry NB, Kelly AM (2013) Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a timedependent manner. Hippocampus 23:437–450

    Article  CAS  PubMed  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev, CD005593.

  • Bjorklund A, Kordower JH (2013) Cell therapy for Parkinson’s disease: what next? Mov Disord 28:110–115

    Article  CAS  PubMed  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106:13594–13599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutajangout A, Noorwali A, Atta H, Wisniewski T (2017) Human umbilical cord stem cell xenografts improve cognitive decline and reduce the amyloid burden in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 14:104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von K, A., Morris, M.C. (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacquevel M, Aeschbach L, Houacine J, Fraering PC (2012) Alzheimer’s disease- linked mutations in presenilin-1 result in a drastic loss of activity in purified gamma-secretase complexes. PLoS One. 7.

  • Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A (2012) Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 347:291–301

    Article  CAS  PubMed  Google Scholar 

  • Chang KA, Lee JH, Suh YH (2014) Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 126:293–301

    Article  CAS  PubMed  Google Scholar 

  • Choi SS, Lee SR, Kim SU, Lee HJ (2014) Alzheimer’s disease and stem cell therapy. Exp Neurobiol 23:45–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Coric V, van Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW, Soininen H, Thein S, Shiovitz T, Pilcher G, Colby S (2012) Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69:1430–1440

    Article  PubMed  Google Scholar 

  • Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Lv P, Xing QU, Qu R, Yao N, Yang BO (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301

    Article  CAS  PubMed  Google Scholar 

  • Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B, Koehle C (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16

    Article  CAS  PubMed  Google Scholar 

  • Das P, Golde T (2006) Dysfunction of TGF-β signaling in Alzheimer’s disease. J Clin Invest 116:2855–2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B (2014) Lessons from a failed γ-secretase Alzheimer trial. Cell 159:721–726

    Article  PubMed  CAS  Google Scholar 

  • Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92

    Article  CAS  PubMed  Google Scholar 

  • Dhivya V, Balachandar V (2017) Cell replacement therapy is the remedial solution for treating Parkinson’s disease. Stem Cell Investig 4.

  • Ding H, Zhang H, Ding H, Li D, Yi X, Ma X, Li R, Huang M, Ju X (2017) Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol 14:693–701

    Article  CAS  PubMed  Google Scholar 

  • Doi D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y, Saiki H, Gomi M, Yoshikawa T (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem cells 30:935–945

    Article  CAS  PubMed  Google Scholar 

  • Duncan T, Valenzuela M (2017) Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 8:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrhart J, Darlington D, Kuzmin-Nichols N, Sanberg CD, Sawmiller DR, Sanberg PR, Tan J (2016) Biodistribution of infused human umbilical cord blood cells in Alzheimer's disease-like murine model.

  • Emmerson SJ, Gargett CE (2016) Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse. World J Stem Cells 26:202

    Article  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75:321–341

    Article  CAS  PubMed  Google Scholar 

  • Foltynie T, Hariz MI (2010) Surgical management of Parkinson’s disease. Expert Rev Neurother 10:903–914

    Article  PubMed  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen SF, Wicki-Stordeur LE, Sanchez-Arias JC, Swayne LA (2019) Exploring the Pannexin 1 interactome: In silico cross-analyses with postsynaptic proteins and neuropsychiatric disorder susceptibility genes. bioRxiv. 801563.

  • Fu YS, Cheng YC, Lin MYA, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem cells 24:115–124

    Article  PubMed  Google Scholar 

  • Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  CAS  PubMed  Google Scholar 

  • García-León JA, Cabrera-Socorro A, Eggermont K, Swijsen A, Terryn J, Fazal R, Nami F, Ordovás L, Quiles A, Lluis F, Serneels L (2018) Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement 14:1261–1280

    Article  PubMed  Google Scholar 

  • Gasmi M, Herzog CD, Brandon EP, Cunningham JJ, Ramirez GA, Ketchum ET, Bartus RT (2007) Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Molec Therapy 15:62–68

    Article  CAS  Google Scholar 

  • Gavish L, Perez LS, Reissma P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg 40:371–378

    Article  Google Scholar 

  • Gerth DJ, Thaller SR (2019) Adipose-derived mesenchymal stem cells: current and future applications in craniofacial surgery. J Craniofac Surg 30:636–638

    Article  PubMed  Google Scholar 

  • Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    Article  CAS  PubMed  Google Scholar 

  • Hamilton LK, Fernandes KJ (2018) Neural stem cells and adult brain fatty acid metabolism: lessons from the 3xTg model of Alzheimer’s disease. Biol Cell 110:6–25

    Article  CAS  PubMed  Google Scholar 

  • Han L, Zhou Y, Zhang R, Wu K, Lu Y, Li Y, Duan R, Yao Y, Zhu D, Jia Y (2018) MicroRNA let-7f-5p promotes bone marrow mesenchymal stem cells survival by targeting caspase-3 in Alzheimer disease model. Front Neurosci 12:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Han MH, Lee EH, Koh SH (2016) Current opinion on the role of neurogenesis in the therapeutic strategies for Alzheimer disease, Parkinson disease, and ischemic stroke; considering neuronal voiding function. Int Neurourol J 20:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy SA, Maltman DJ, Przyborski SA (2008) Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, Sara G, Sadiq SA (2018) Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine 29:23–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Holtzman DM (2013) Biomarker modeling of Alzheimer’s disease. Neuron 80:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janvin CC, Larsen JP, Aarsland D, Hugdahl K (2006) Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord Official J Movement Disorder Soc 21:1343–1349

    Article  Google Scholar 

  • Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, Hadaczek P, Federoff HJ, Bankiewicz K, Forsayeth J (2008) Human interleukin-10 gene transfer is protective in a rat model of Parkinson’s disease. Mol Ther 16:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Jun SM, Park M, Lee JY, Jung S, Lee JE, Shim SH, Song H, Lee DR (2019) Single cell-derived clonally expanded mesenchymal progenitor cells from somatic cell nuclear transfer-derived pluripotent stem cells ameliorate the endometrial function in the uterus of a murine model with Asherman’s syndrome. Cell Prolif 52:e12597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang JM, Yeon BK, Cho SJ, Suh YH (2016) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis 54:879–889

    Article  PubMed  Google Scholar 

  • Kim DH, Lee D, Lim H, Choi SJ, Oh W, Yang YS, Chang JH, Jeon HB (2018) Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer’s disease. Biochem Biophys Res 504:933–940

    Article  CAS  Google Scholar 

  • Kim JY, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Kim HS, Park JM, Kim HW, Park MK, Lee HS, Lim DS, Lee TH, Chopp M, Moon J (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34:2408–2420

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chang KA, Park HG, Ra JC, Kim HS, Suh YH (2012) The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS ONE 7:e45757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell reports 1:703–714

    Article  CAS  PubMed  Google Scholar 

  • Klincumhom N, Pirity MK, Berzsenyi S, Ujhelly O, Muenthaisong S, Rungarunlert S, Tharasanit T, Techakumphu M, Dinnyes A (2012) Generation of neuronal progenitor cells and neurons from mouse sleeping beauty transposon-generated induced pluripotent stem cells. Cellular Reprogram 14:390–397

    Article  CAS  Google Scholar 

  • Kohyama J, Kojima T, Takatsuka E, Yamashita T, Namiki J, Hsieh J, Gage FH, Namihira M, Okano H, Sawamoto K, Nakashima K (2008) Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc Natl Acad Sci U S A 105:18012–18017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HM, Joo BS, Lee CH, Kim HY, Ock JH, Lee YS (2015) Effect of glucagon-like peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. J Menopausal Med 21:93–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Fricke F, Warnken U, Schnölzer M, Kopitz J, Gebert J (2015) Reconstitution of TGFBR2-mediated signaling causes upregulation of GDF-15 in HCT116 colorectal cancer cells. PloS one, 10.

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’episcopo F, Tirolo C, Peruzzotti-Jametti L, Serapide MF, Testa N, Caniglia S, Balzarotti B, Pluchino S, Marchetti B (2018) Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells 36:1179–1197

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo K, Ikehara S (2014) Stem cell treatment for Alzheimer’s disease. Int J Mol Sci 15:19226–19238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  CAS  PubMed  Google Scholar 

  • Liew LC, Katsuda T, Gailhouste L, Nakagama H, Ochiya T (2017) Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer’s disease. Int Immunol 29:11–19

    Article  CAS  PubMed  Google Scholar 

  • Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 7:269–291

    Article  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Lee M, Ban JJ, Im W, Mook-Jung I, Kim M (2017) Cytosolic extract of human adipose stem cells reverses the amyloid beta-induced mitochondrial apoptosis via P53/Foxo3a pathway. PloS one. 12.

  • Long JM, Ray B, Lahiri DK (2014) MicroRNA-339-5p down-regulates protein expression of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem 289:5184–5198

    Article  CAS  PubMed  Google Scholar 

  • Losurdo M, Pedrazzoli M, D'Agostino C, Elia CA, Massenzio F, Lonati E, Mauri M, Rizzi L, Molteni L, Bresciani E, Dander E (2020) Intranasal delivery of mesenchymal stem cell‐derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem Cells Translational Med.

  • Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2013) Immunobiology of mesenchymal stem cells. Cell Death Different 21:216–225

    Article  CAS  Google Scholar 

  • Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22:113–126

    Article  Google Scholar 

  • Mann DM (1996) Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 5:423–427

    Article  CAS  PubMed  Google Scholar 

  • Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    Article  CAS  PubMed  Google Scholar 

  • McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG (2008) Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210:14–29

    Article  CAS  PubMed  Google Scholar 

  • Mennan C, Brown S, McCarthy H, Mavrogonatou E, Kletsas D, Garcia J, Balain B, Richardson J, Roberts S (2016) Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton’s jelly and bone marrow. FEBS Open Bio 6:1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monacelli F, Rosa G (2014) Cholinesterase inhibitors: cardioprotection in Alzheimer’s disease. J Alzheimers Dis 42:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, Mirzaei HR (2018) Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol 233:3831–3845

    Article  CAS  PubMed  Google Scholar 

  • Morandi F, Raffaghello L, Bianchi G (2008) Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 26:1275–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naaldijk Y, Jaeger C, Fabian C, Leovsky C, Blüher A, Rudolph L, Hinze A, Stolzing A (2017) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS 1 Alzheimer mice. Neuropathol Appl Neurobiol 43:299–314

    Article  CAS  PubMed  Google Scholar 

  • Obtulowicz P, Lech W, Strojek L, Sarnowska A, Domanska-Janik K (2016) Induction of endothelial phenotype from Wharton’s Jelly-derived MSCs and comparison of their vasoprotective and neuroprotective potential with primary WJ-MSCs in CA1 hippocampal region ex vivo. Cell Transplant 25:715–727

    Article  PubMed  Google Scholar 

  • Ohtake Y, Li S (2015) Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res 1619:22–35

    Article  CAS  PubMed  Google Scholar 

  • Oron A, Oron U (2016) Low-level laser therapy to the bone marrow ameliorates neurodegenerative disease progression in a mouse model of Alzheimer’s disease: a minireview. Photomed Laser Surg 34:627–630

    Article  CAS  PubMed  Google Scholar 

  • Park D, Yang YH, Bae DK, Lee SH, Yang G, Kyung J, Kim D, Choi EK, Lee SW, Kim GH et al (2013) Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 34:2639–2646

    Article  CAS  PubMed  Google Scholar 

  • Park HW, Moon HE, Kim HSR, Paek SL, Kim Y, Chang JW, Yang YS, Kim K, Oh W, Hwang JH et al (2015) Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res 93:1814–1825

    Article  CAS  PubMed  Google Scholar 

  • Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145:156117

    Article  CAS  Google Scholar 

  • Potkin SG (2002) The ABC of Alzheimer’s disease: ADL and improving day-to-day functioning of patients. Int Psychogeriatr 14:7–26

    Article  PubMed  Google Scholar 

  • Powers RE, Ashford JW, Peschin S (2008) Memory matters. Alzheimer's Foundation of America.

  • Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M, Alzheimer’s Disease International (2015) World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International, London

  • Robbins JP, Price J (2017) Human induced pluripotent stem cells as a research tool in Alzheimer’s disease. Psychol Med 47:2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YDC, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Bioph Res Co 294:371–379

    Article  CAS  Google Scholar 

  • Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, Berg J, Kurtz A, Akyüz L, Steiner B (2015) Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regen Med 10:431–446

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Li X, Bao X, Wang R (2017) Microglia-targeted stem cell therapies for Alzheimer disease: a preclinical data review. J Neurosci Res 95:2420–2429

    Article  CAS  PubMed  Google Scholar 

  • Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans Roy Soc B Biol Sci 361:1477–1497

    Article  CAS  Google Scholar 

  • Song HJ, Kim TH, Lee HH, Kim JM, Park YJ, Lee A, Kim SA, Choi HJ (2017) Cell therapy products in Alzheimer disease. J Menopausal Med 23:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F, Altick AL, Von Bartheld CS, Klein R, Sendtner M, Unsicker K (2009) Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 29:13640–13648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T, Cooper O, Spealman R et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31:1548–1562

    Article  CAS  PubMed  Google Scholar 

  • Takata K, Kitamura Y, Yanagisawa D, Morikawa S, Morita M, Inubushi T, Tsuchiya D, Chishiro S, Saeki M, Taniguchi T, Shimohama S (2007) Microglial transplantation increases amyloid-β clearance in Alzheimer model rats. FEBS Lett 581:475–478

    Article  CAS  PubMed  Google Scholar 

  • Tesseur I, Zou K, Esposito L, Bard F, Berber E, Van Can J, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L (2006) Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A (2019) Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther 10:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tincer G, Mashkaryan V, Bhattarai P, Kizil C (2016) Focus: The aging brain: neural stem/progenitor cells in Alzheimer’s disease. Birth Defects Res C Embryo Today 89:23

    Google Scholar 

  • Tirino V, Paino F, d’Aquino R, Desiderio V, De Rosa A, Papaccio G (2011) Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives. Stem Cell Rev Rep 7:608–615

    Article  PubMed  Google Scholar 

  • Tong LM, Fong H, Huang Y (2015) Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp Mol Med 47:e151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuby H, Maltz L, Oron U (2009) Implantation of low-level laser irradiated mesenchymal stem cells into the infarcted rat heart is associated with reduction in infarct size and enhanced angiogenesis. Photomed Laser Surg 27:227–233

    Article  CAS  PubMed  Google Scholar 

  • Turgeman G (2015) The therapeutic potential of mesenchymal stem cells in Alzheimer’s disease: converging mechanisms. Neural Regeneration Res 10:698

    Article  Google Scholar 

  • Tuszynski MH, Yang JH, Barba D, Hoi-Sang U, Bakay RA, Pay MM, Masliah E, Conner JM, Kobalka P, Roy S, Nagahara AH (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72:1139–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Ven C, Collins D, Bradley MB, Morris E, Cairo MS (2007) The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol 35:1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Huang AQ, Zhou MH, Mei YA (2014) GDF15 regulates Kv2. 1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem J 460:35–47

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Zhang K, Li Q et al (2018) Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav Brain Res 339:297–304

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang P, Wang Y, Shi C, Jing N, Sun H, Yang J, Liu Y, Wen X, Zhang J, Zhang S (2017) Establishment of induced pluripotent stem cell line (ZZUi010-A) from an Alzheimer’s disease patient carrying an APP gene mutation. Stem Cell Res 25:213–216

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wires Dev Biol 2:47–63

    Article  CAS  Google Scholar 

  • Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7:a021287

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu QY, Li J, Feng ZT, Wang TH (2007) Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neurosci Lett 417:281–285

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lei Y, Luo J, Wang J, Zhang S, Yang XJ, Sun M, Nuwaysir E, Fan G, Zhao J, Lei L (2013) Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res 10:213–227

    Article  CAS  PubMed  Google Scholar 

  • Xuan AG, Long DH, Gu HG, Yang DD, Hong LP, Leng SL (2008) BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix. Neurosci Lett 440:331–335

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y (2014) Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen Res 9:798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Xie ZH, Wei LF, Yang HN, Yang SN, Zhu ZY, Wang P, Zhao CP, Bi JZ (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res Ther 4:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Hei Y, Liu W (2018) Upregulation of seladin-1 and nestin expression in bone marrow mesenchymal stem cell transplantation via the ERK1/2 and PI3K/Akt signaling pathways in an Alzheimer’s disease model. Oncol Lett 15:7443–7449

    PubMed  Google Scholar 

  • Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Il Lee K, Song S, Kim YB, Han SB, Chung HM et al (2013) Placenta-derived mesenchymal stem cells improve memory dysfunction in an A β 1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis 4:e958–e958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Tan X, Dong C, Zou L, Zhao H, Zhang X, Tian M, Jin G (2012) In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton’s jelly, into choline acetyltransferase (ChAT)-positive cells. INT J DEV NEUROSCI 30:471–477

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ge M, Hao Q, Dong B (2018) Induced pluripotent stem cells in rat models of Parkinson’s disease: a systematic review and meta analysis. Biomed Rep 8:289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li P, Feng J, Wu M (2016) Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 37:1039–1047

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J, Li T (2015) Human umbilical cord-derived mesenchymal stem cells improve learning and memory function in hypoxic-ischemic brain-damaged rats via an IL-8-mediated secretion mechanism rather than differentiation pattern induction. Cell Physiol Biochem 35:2383–2401

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Sun M, Li H, Yan M, He Z, Wang W, Wang W, Lu S (2013) Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy 15:467–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Vice Chancellor for Research and Technology, Kashan University of Medical Sciences, Kashan, Iran; and Shahid Beheshti University of Medical Sciences, Tehran, Iran; Saeid & Maryam.

Author information

Authors and Affiliations

Authors

Contributions

Dr. SB-M design and prepare the paper; Saeid & Maryam.

Corresponding author

Correspondence to Saeid Bagheri-Mohammadi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri-Mohammadi, S. Stem cell-based therapy as a promising approach in Alzheimer's disease: current perspectives on novel treatment. Cell Tissue Bank 22, 339–353 (2021). https://doi.org/10.1007/s10561-020-09896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09896-3

Keywords

Navigation