Skip to main content

Advertisement

Log in

Investigation of molecular cryopreservation, fertility potential and microRNA-mediated apoptosis in Oligoasthenoteratozoospermia men

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Investigation of the cryo-injury mechanism can provide novel insight into cryopreservation. The objective of this study is to assess the effect of cryopreservation on fertility potential, motility, oxidative stress (OS), DNA fragmentation, microRNAs (miRNAs), and apoptotic target genes in the infertile men compared to the fertile men. All 40 samples were divided into two leading groups of fresh and cryopreserved sperms. Each main group was subdivided into three groups including, Normozoospermia, and Mild, and Severe Oligoasthenoteratozoospermia (OAT). In all collected samples the following were assessed: microRNA-34c (miR-34c) and miR-184, P53 and Caspase9 using Quantitative real-time polymerase chain reaction (RT-PCR), malondialdehyde (MDA), Superoxide dismutase (SOD) using imaging multi-mode reader, and DNA fragmentation using Sperm DNA Fragmentation Assay Test (SDFA). Within the studied groups, immotile spermatozoa were increased due to cryopreservation. We observed an increasing levels of SOD, MDA, and DNA fragmentation. Also, cryopreservation was associated with decreasing the expression of P53, mir-43c, and miR-184 while capase9 was showed enhancing expression after freeze-thawing of sperm cells. During cryopreservation, sperm fertility and motility were influenced via apoptosis cascade-mediated mitochondrial dysfunctions such as caspase9. Also, we found that miR-34c, miR184, and P53 could impact fertility potential. In Addition, there was a meaningful correlations between microRNAs and motility post freeze-thawing process in Severe Oligoasthenoteratozoospermia men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal A et al (2019) Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Men’s Health 37:296–312

    Google Scholar 

  • Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5:872

    PubMed  PubMed Central  Google Scholar 

  • Aitken RJ (1995) Free radicals, lipid peroxidation and sperm function . Reprod Fertil Dev 7:659–668

    CAS  PubMed  Google Scholar 

  • Anderson R (2008) Fertility preservation techniques: laboratory and clinical progress and current issues. Reproduction 136:667–669

    CAS  PubMed  Google Scholar 

  • Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Guerin JF (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87:93–100

    CAS  PubMed  Google Scholar 

  • Borges E Jr, Rossi LM, de Freitas CVL, Guilherme P, Bonetti TCS, Iaconelli A, Pasqualotto FF (2007) Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril 87:316–320

    PubMed  Google Scholar 

  • Bouhallier F et al (2010) Role of miR-34c microRNA in the late steps of spermatogenesis. Rna 16:720–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brum A, Sabeur K, Ball B (2008) Apoptotic-like changes in equine spermatozoa separated by density-gradient centrifugation or. after cryopreservation Theriogenology 69:1041–1055

    CAS  PubMed  Google Scholar 

  • Capra E et al (2017) Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between high-and low-motile sperm populations. BMC Genomics 18:14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalla P, Rovei V, Masera S, Vercellino M, Massobrio M, Mutani R, Revelli A (2006) Fertility in patients with multiple sclerosis: current knowledge and future perspectives. Neurol Sci 27:231–239

    CAS  PubMed  Google Scholar 

  • Dalzell LH, Thompson-Cree ME, McClure N, Traub AI, Lewis SE (2003) Effects of 24-hour incubation after freeze-thawing on DNA fragmentation of testicular sperm from infertile and fertile men. Fertil Steril 79:1670–1672

    PubMed  Google Scholar 

  • de Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP (2006) Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 86:597–600

    PubMed  Google Scholar 

  • Donnelly ET, McClure N, Lewis SE (2001a) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900

    CAS  PubMed  Google Scholar 

  • Donnelly ET, Steele EK, McClure N, Lewis SE (2001b) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 16:1191–1199

    CAS  PubMed  Google Scholar 

  • Evenson DP (2016) The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci 169:56–75

    CAS  PubMed  Google Scholar 

  • Ezzati M, Shanehbandi D, Hamdi K, Rahbar S, Pashaiasl M (2019) Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell Tissue Bank 21:1–15

    PubMed  Google Scholar 

  • Fraser L, Strzeżek J, Wasilewska K, Pareek C (2017) Sperm DNA damage in relation to lipid peroxidation following freezing-thawing of boar semen South African. J Anim Sci 47:213–218

    CAS  Google Scholar 

  • Guo W, Xie B, Xiong S, Liang X, Gui J-F, Mei J (2017) Mir-34a regulates sperm motility in zebrafish. Int J Mol Sci 18:2676

    PubMed Central  Google Scholar 

  • Gürler H, Malama E, Heppelmann M, Calisici O, Leiding C, Kastelic J, Bollwein H (2016) Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology 86:562–571

    PubMed  Google Scholar 

  • Guthrie H, Welch G, Long J (2008) Mitochondrial function and reactive oxygen species action in relation to. boar motility Theriogenology 70:1209–1215

    CAS  PubMed  Google Scholar 

  • Huang J, Li X, Li H, Su Z, Wang J, Zhang H (2015) Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases. Int J Clin Exp Pathol 8:14221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karaji RO, Kia HD, Ashrafi I (2014) Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze–thaw bull sperm. Cell Tissue Bank 15:461–470

    Google Scholar 

  • Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ (2011) Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J 436:687–698

    CAS  PubMed  Google Scholar 

  • Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, Zander-Fox DL (2014) Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS ONE 9:e100832

    PubMed  PubMed Central  Google Scholar 

  • Lu J-C, Huang Y-F, Lü N-Q (2010) WHO Laboratory Manual for the Examination and Processing of Human Semen: its applicability to andrology laboratories in China. Zhonghua nan ke xue = Natl J Androl 16:867–871

    Google Scholar 

  • Lusignan M-F, Li X, Herrero B, Delbès G, Chan P (2018) Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology 6:829–835

    CAS  PubMed  Google Scholar 

  • Martin S, Reutelingsperger C, McGahon AJ, Rader JA, Van Schie R, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    CAS  PubMed  Google Scholar 

  • Matzuk MM, Lamb DJ (2002) Genetic dissection of mammalian fertility pathways. Nat Med 8:S33

    Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    CAS  PubMed  Google Scholar 

  • Mostafa T, Rashed LA, Nabil NI, Osman I, Mostafa R, Farag M (2016) Seminal miRNA relationship with apoptotic markers and oxidative stress in infertile men with varicocele. BioMed Res Int 2016:4302754

    PubMed  PubMed Central  Google Scholar 

  • Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S (2008) Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J Assist Reprod Genet 25:403–411

    PubMed  PubMed Central  Google Scholar 

  • Paoli D, Pelloni M, Lenzi A, Lombardo F (2019) Cryopreservation of sperm: effects on chromatin and strategies to prevent them. In: Genetic damage in human spermatozoa. Springer, pp 149–167

  • Rahbar S et al (2017) New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue. Cell Mol Biol (Noisy-le-Grand France) 63:77–83

    CAS  Google Scholar 

  • Rahbar S, Pashaiasl M, Ezzati M, AsrBadr YA, Mohammadi-Dehcheshmeh M, Mohammadi SA, Novin MG (2019) MicroRNA-based regulatory circuit involved in sperm infertility. Andrologia 52:e13453

    PubMed  Google Scholar 

  • Raver-Shapira N et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    CAS  PubMed  Google Scholar 

  • Roca J et al (2005) Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J Androl 26:15–24

    CAS  PubMed  Google Scholar 

  • Said TM, Gaglani A, Agarwal A (2010) Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 21:456–462

    PubMed  Google Scholar 

  • Soltani AR, Soltani Z, Sistani M (2019) Novel evaluation of sevoflurane anesthetic exposure on the testicular germ cells of neonatal male mice. Toxicol Res 8:988–993

    Google Scholar 

  • Tarasov V et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    CAS  PubMed  Google Scholar 

  • Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang J-A, Clark AM (2009a) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24:2061–2070

    CAS  PubMed  Google Scholar 

  • Thomson LK, Fleming SD, Schulke L, Barone K, Zieschang J-A, Clark AM (2009) The DNA integrity of cryopreserved spermatozoa separated for use in assisted reproductive technology is unaffected by the type of cryoprotectant used but is related to the DNA integrity of the fresh separated preparation. Fertil Steril 92:991–1001

    CAS  PubMed  Google Scholar 

  • Thomson LK, Fleming SD, Barone K, Zieschang J-A, Clark AM (2010) The effect of repeated freezing and thawing on human sperm DNA fragmentation. Fertil Steril 93:1147–1156

    CAS  PubMed  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14:243–258

    CAS  PubMed  Google Scholar 

  • van Overveld FW, Haenen GR, Rhemrev J, Vermeiden JP, Bast A (2000) Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chemico Biol Interact 127:151–161

    Google Scholar 

  • Wang AW, Zhang H, Ikemoto I, Anderson DJ, Loughlin KR (1997) Reactive oxygen species generation by seminal cells during cryopreservation. Urology 49:921–925

    CAS  PubMed  Google Scholar 

  • Wang D-T et al (2013) miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol Rep 30:492–498

    PubMed  Google Scholar 

  • Weng S-L, Taylor SL, Morshedi M, Schuffner A, Duran EH, Beebe S, Oehninger S (2002) Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod 8:984–991

    CAS  PubMed  Google Scholar 

  • Wu J, Bao J, Wang L, Hu Y, Xu C (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2014) Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci 111:E2851–E2857

    CAS  PubMed  Google Scholar 

  • Wündrich K, Paasch U, Leicht M, Glander H-J (2006) Activation of caspases in human spermatozoa during cryopreservation—an immunoblot study. Cell Tissue Bank 7:81–90

    PubMed  Google Scholar 

  • Yagi K (1984) Assay for plasma lipid peroxides. Methods Enzymol 109:328–331

    Google Scholar 

  • Yániz J, Palacín I, Vicente-Fiel S, Sánchez-Nadal J, Santolaria P (2015) Sperm population structure in high and low field fertility rams. Anim Reprod Sci 156:128–134

    PubMed  Google Scholar 

  • Zeng C, He L, Peng W, Ding L, Tang K, Fang D, Zhang Y (2014) Selection of optimal reference genes for quantitative RT-PCR studies of boar spermatozoa cryopreservation. Cryobiology 68:113–121

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zeng C-J, He L, Ding L, Tang K-Y, Peng W-P (2015) Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation. Theriogenology 83:634–641

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2017) Cryopreservation of boar sperm induces differential microRNAs expression. Cryobiology 76:24–33

    CAS  PubMed  Google Scholar 

  • Ziarati N, Topraggaleh TR, Rahimizadeh P, Montazeri L, Maroufizadeh S, Gilani MAS, Shahverdi A (2019) Micro-quantity straw as a carrier for cryopreservation of oligozoospermic semen samples: effects of storage times and cryoprotectant. Cryobiology 86:65–70

    PubMed  Google Scholar 

  • Zribi N et al (2011) Sperm DNA fragmentation and oxidation are independent of malondialdheyde. Reprod Biol Endocrinol 9:47

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the staff of the Infertility Department of Al-Zahra hospital. We also thanks all semen donors of this study. This study was endorsed by Immunology Research Center, Tabriz University of Medical Sciences, Tabriz/ Iran (60961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Pashaiasl.

Ethics declarations

Conflict of interest

The authors have no conflict“ of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati, M., Shanehbandi, D., Bahramzadeh, B. et al. Investigation of molecular cryopreservation, fertility potential and microRNA-mediated apoptosis in Oligoasthenoteratozoospermia men. Cell Tissue Bank 22, 123–135 (2021). https://doi.org/10.1007/s10561-020-09872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09872-x

Keywords

Navigation