Skip to main content
Log in

In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Grafting based on both autogenous and allogenous human bone is widely used to replace areas of critical loss to induce bone regeneration. Allogenous bones have the advantage of unlimited availability from tissue banks. However, their integration into the remaining bone is limited because they lack osteoinduction and osteogenic properties. Here, we propose to induce the demineralization of the allografts to improve these properties by exposing the organic components. Allografts fragments were demineralized in 10% EDTA at pH 7.2 solution. The influence of the EDTA-DAB and MAB fragments was evaluated with respect to the adhesion, growth and differentiation of MC3′T3-E1 osteoblasts, primary osteoblasts and dental pulp stem cells (DPSC). Histomorphological analyses showed that EDTA-demineralized fragments (EDTA-DAB) maintained a bone architecture and porosity similar to those of the mineralized (MAB) samples. BMP4, osteopontin, and collagen III were also preserved. All the cell types adhered, grew and colonized both the MAB and EDTA-DAB biomaterials after 7, 14 and 21 days. However, the osteoblastic cell lines showed higher viability indexes when they were cultivated on the EDTA-DAB fragments, while the MAB fragments induced higher DPSC viability. The improved osteoinductive potential of the EDTA-DAB bone was confirmed by alkaline phosphatase activity and calcium deposition analyses. This work provides guidance for the choice of the most appropriate allograft to be used in tissue bioengineering and for the transport of specific cell lineages to the surgical site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al Kayal T, Panetta D, Canciani B, Losi P, Tripodi M, Burchielli S et al (2015) Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in wistar rat. PLoS ONE 10(4):e0125110

    PubMed  PubMed Central  Google Scholar 

  • Bertassoli BM, Costa ES, Sousa CA, Albergaria JDS, Maltos KLM, Goes AM et al (2016) Rat dental pulp stem cells: isolation and phenotypic characterization method aiming bone tissue bioengineering. Braz Arch Biol Technol 59:e16150613

    Google Scholar 

  • Blum B, Moseley J, Miller L, Richelsoph K, Haggard W (2004) Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics 27(1):S161–S165

    PubMed  Google Scholar 

  • d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A et al (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    PubMed  Google Scholar 

  • Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J (2017) Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc Inst Mech Eng H 23:555–564

    Google Scholar 

  • Dorozhkin SV (1997) Surface reactions of apatite dissolution. J Colloid Interface Sci 191:489–497

    CAS  PubMed  Google Scholar 

  • Figueiredo M, Cunha S, Martins G, Freitas J, Judas F, Figueiredo H (2011) Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chem Eng Res and Des 89:116–124

    CAS  Google Scholar 

  • Fillingham Y, Jacobs J (2016) Bone grafts and their substitutes. Bone Joint J 98B(1 Suppl A):6–9

    Google Scholar 

  • Garbin Junior EA, de Lima VN, Momesso GAC, Mello-Neto JM, Érnica NM, Magro Filho O (2017) Potential of autogenous or fresh-frozen allogeneic bone block grafts for bone remodelling: a histological, histometrical and immunohistochemical analysis in rabbits. Br J Oral Maxillofac Surg 55:589–593

    CAS  PubMed  Google Scholar 

  • Grayson WL, Frohlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C et al (2010) Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA 107:3299–3304

    CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    CAS  PubMed  Google Scholar 

  • Gupta S, Jawanda MK, Manjunath SM, Bharti A (2014) Qualitative histological evaluation of hard and soft tissue components of human permanent teeth using various decalcifying agents—a comparative study. J Clin Diag Res 8:ZC69–ZC72

    Google Scholar 

  • Han B, Yang Z, Nimni M (2008) Effect of gamma irradiation on osteoinduction associated with demineralized bone matrix. J Orthop Res 26:75–82

    CAS  PubMed  Google Scholar 

  • Hoffman MD, Xie C, Zhang X, Benoit DS (2013) The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 34:8887–8898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horneman DA, Ottens M, Hoorneman M, Van der Wielen LAM (2004) Reaction and diffusion during demineralization of animal bone. J Am Inst Chem Eng 50:2682–2690

    CAS  Google Scholar 

  • Huber E, Pobloth AM, Bormann N, Kolarczik N, Schmidt-Bleek K, Schell H et al (2017) Demineralized bone matrix as a carrier for bone morphogenetic protein-2: burst release combined with long-term binding and osteoinductive activity evaluated in vitro and in vivo. Tissue Eng Part A 23:1321–1330

    CAS  PubMed  Google Scholar 

  • Huri PY, Ozilgen BA, Hutton DL, Grayson WL (2014) Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomed Mater 9(4):045003

    PubMed  Google Scholar 

  • Hülsmann M, Heckendorff M, Lennon A (2003) Chelating agents in root canal treatment: mode of action and indications for their use. Int Endod J 36:810–830

    PubMed  Google Scholar 

  • Jain A, Kumar S, Aggarwal AN, Jajodia N (2015) Augmentation of bone healing in delayed and atrophic nonunion of fractures of long bones by partially decalcified bone allograft (decal bone). Indian J Orthop 49:637–642

    PubMed  PubMed Central  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    CAS  PubMed  Google Scholar 

  • Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T (2015) Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Regen Med 10:579–590

    CAS  PubMed  Google Scholar 

  • Kweon H, Lee SW, Hahn BD, Lee YC, Kim SG (2014) Hydroxyapatite and silk combination-coated dental implants result in superior bone formation in the peri-implant area compared with hydroxyapatite and collagen combination-coated implants. J Oral Maxillofac Surg 72:1928–1936

    PubMed  Google Scholar 

  • Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402

    PubMed  Google Scholar 

  • Laino G, Carinci F, Graziano A, d’Aquino R, Lanza V, De Rosa A et al (2006) In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 17:511–515

    PubMed  Google Scholar 

  • Lekishvili MV, Snetkov AI, Vasiliev MG, Il’ina VK, Tarasov NI, Gorbunova ED et al (2004) Experimental and clinical study of the demineralized bone allografts manufactured in the tissue bank of CITO. Cell Tissue Bank 5:231–238

    CAS  PubMed  Google Scholar 

  • Li D, Deng L, Xie X, Yang Z, Kang P (2016) Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair. J Mater Sci Mater Med 27:101

    PubMed  Google Scholar 

  • Li JH, Liu DY, Zhang FM, Wang F, Zhang WK, Zhang ZT (2011) Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering. Chin Med J 124:4022–4028

    CAS  PubMed  Google Scholar 

  • Li J, Xu T, Hou W, Liu F, Qing W, Huang L et al (2020) The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis. Mater Sci Eng C 109:110641

    CAS  Google Scholar 

  • Lin L, Shen Q, Wei X, Hou Y, Xue T, Fu X et al (2009) Comparison of osteogenic potentials of BMP4 transduced stem cells from autologous bone marrow and fat tissue in a rabbit model of calvarial defects. Calcified Tissue Inter 85:55–65

    CAS  Google Scholar 

  • Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19:1S–12S

    CAS  PubMed  Google Scholar 

  • Liu HC, Ling-Ling E, Wang DS, Su F, Wu X, Shi ZP et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17:2417–2433

    CAS  PubMed  Google Scholar 

  • Liu T, Wu G, Wismeijer D, Gu Z, Liu Y (2013) Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 56:110–118

    CAS  PubMed  Google Scholar 

  • Marks T, Wingerter S, Franklin L, Woodall J Jr, Tucci M, Russell G et al (2007) Histological and radiographic comparison of allograft substitutes using a continuous delivery model in segmental defects. Biomed Sci Instrum 43:194–199

    PubMed  Google Scholar 

  • Mauney JR, Jaquiéry C, Volloch V, Heberer M, Martin I, Kaplan DL (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    CAS  PubMed  Google Scholar 

  • Mulliken JB, Kaban LB, Glowacki J (1984) Induced osteogenesis: the biological principle and clinical applications. J Surg Res 37:487–496

    CAS  PubMed  Google Scholar 

  • Murray SS, Brochmann EJ, Harker JO, King E, Lollis RJ, Khaliq SA (2007) A statistical model to allow the phasing out of the animal testing of demineralized bone matrix products. Altern Lab Anim 35:405–409

    CAS  PubMed  Google Scholar 

  • Orciani M, Fini M, Primio RD, Belmonte MM (2017) Biofabrication and bone tissue regeneration: cell source, approaches and challenges. Front Bioeng Biotechnol 5:17

    PubMed  PubMed Central  Google Scholar 

  • Oryan A, Kamali A, Moshiri A, Eslaminejad MB (2017) Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204:59–83

    CAS  PubMed  Google Scholar 

  • Pandit N, Pandit IK (2016) Autogenous bone grafts in periodontal practice: a literature review. J Int Clin Dent Res Organ 8:27–33

    Google Scholar 

  • Pietrzak WS, Ali SN, Chitturi D, Jacob M, Woodell-May JE (2011) BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tissue Bank 12:81–88

    CAS  PubMed  Google Scholar 

  • Prasad P, Donoghue M (2013) A comparative study of various decalcification techniques. Indian J Dent Res 24:302–308

    PubMed  Google Scholar 

  • Saima S, Jan SM, Shah AF, Yousuf A, Batra M (2016) Bone grafts and bone substitutes in dentistry. J Oral Res Rev 8:36–38

    Google Scholar 

  • Sanjai K, Kumarswamy J, Patil A, Papaiah L, Jayaram S, Krishnan L (2012) Evaluation and comparison of decalcification agents on the human teeth. J Oral Maxillofac Pathol 16:222–227

    PubMed  PubMed Central  Google Scholar 

  • Shekaran A, García JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE et al (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9:1205–1216

    PubMed  Google Scholar 

  • Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR (2016) Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 3:56–71

    CAS  PubMed  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  • Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX, Jiang S et al (2010) Osteogenesisand angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31:9452–9461

    CAS  PubMed  Google Scholar 

  • Yamamoto N, Furuya K, Hanada K (2002) Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: model for in vitro bone formation. Biol Pharm Bull 25:509–515

    CAS  PubMed  Google Scholar 

  • Yuan J, Liu X, Chen Y, Zhao Y, Liu P, Zhao L et al (2017) Effect of SOX2 on osteogenic differentiation of dental pulpstem cells. Cell Mol Biol 63:41–44

    CAS  PubMed  Google Scholar 

  • Zhang M, Powers RM, Wolfinbarger L (1997) Effects on the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodont 68:1085–1092

    CAS  PubMed  Google Scholar 

  • Zima A, Czechowska J, Siek D, Olkowski R, Noga M, Lewandowska-Szumieł M et al (2017) How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements. J Mater Sci Mater Med 28:117

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Pró-Reitoria de Pesquisa da UFMG (PRPq/UFMG). Erika C Jorge received a scholarship from CNPq. The bovine bone fragments were gifts from Critéria (São Carlos, São Paulo, Brazil).

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano Douglas Albergaria.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed (attached certificate—Protocol No. 288 / 2013).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertassoli, B.M., Silva, G.A.B., Albergaria, J.D. et al. In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells. Cell Tissue Bank 21, 479–493 (2020). https://doi.org/10.1007/s10561-020-09834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09834-3

Keywords

Navigation