Development and validation of Alzheimer’s Disease Animal Model for the Purpose of Regenerative Medicine

Abstract

One of the most common age-related neurodegenerative disorders is Alzheimer’s disease which globally threatening the health of elderly people. Although there are several pharmacological and non- pharmacological treatments for Alzheimer’s disease, they can just decrease the symptoms in these diseases. In this context, cell therapy and regenerative medicine approach as the novel therapeutic strategies for neurodegenerative diseases would be important. Based on scientific research principles, using any novel therapeutic approaches before the run in clinical trials need to take preclinical (animal study) stapes. Accordingly, an animal study can improve our understanding of biological mechanisms of diseases and as an important step should adhering to ethical guidelines and standards. On the other hand, to gain suitable outcomes, it is important to check the appropriate validation of animal models. In this regard, the present review would discuss about the development and validation of appropriate AD animal models in the field of regenerative medicine.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

AD:

Alzheimer’s disease

RM:

Regenerative medicine

FAD:

Familial Alzheimer’s disease

PS1:

Presenilin1

PS2:

Presenilin2

APP:

Amyloid beta A4 precursor protein

APOE:

Apolipoprotein E

MAPT:

Microtubule-associated protein TAU

NMDA:

N-methyl D-aspartate

Aβ:

Amyloid beta

PET:

Positron emission tomography

MRI:

Magnetic resonance imaging

sMRI:

Structural MRI

fMRI:

Functional MRI

GLP:

Good laboratory practice

FDA:

Food and Drug Administration

References

  1. Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY (2017) The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 5(12):610–618

    PubMed Central  Article  Google Scholar 

  2. Aghayan HR, Arjmand B, Norouzi-Javidan A, Saberi H, Soleimani M, Tavakoli SA, Khodadadi A, Tirgar N, Mohammadi-Jahani F (2012) Clinical grade cultivation of human Schwann cell, by the using of human autologous serum instead of fetal bovine serum and without growth factors. Cell Tissue Bank 13(2):281–285

    CAS  PubMed  Article  Google Scholar 

  3. Aghayan HR, Soleimani M, Goodarzi P, Norouzi-Javidan A, Emami-Razavi SH, Larijani B, Arjmand B (2014) Magnetic resonance imaging of transplanted stem cell fate in stroke. J Res Med Sci Off J Isfahan Univ Med Sci 19(5):465–471

    Google Scholar 

  4. Akyar I (2011) GLP: Good laboratory practice. In: Badr Eldin A (ed) Modern approaches to quality control. IntechOpen. https://doi.org/10.5772/19823

  5. Andersen ML, Winter LMF (2019) Animal models in biological and biomedical research - experimental and ethical concerns. Anais da Academia Brasileira de Ciências 91(Suppl. 1):e20170238. https://doi.org/10.1590/0001-3765201720170238

    PubMed  Article  Google Scholar 

  6. Arora T, Mehta AK, Joshi V, Mehta KD, Rathor N, Mediratta PK, Sharma KK (2011) Substitute of animals in drug research: an approach towards fulfillment of 4R’s. Indian J Pharm Sci 73(1):1–6

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Avila-Vazquez MF, Altamirano-Bustamante NF, Altamirano-Bustamante MM (2017) Amyloid biomarkers in conformational diseases at face value: a systematic review. Molecules 23(1):79

    PubMed Central  Article  CAS  Google Scholar 

  8. Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42(3):248–262

    CAS  PubMed  Article  Google Scholar 

  9. Bali P, Lahiri DK, Banik A, Nehru B, Anand A (2017) Potential for stem cells therapy in Alzheimer’s disease: Do neurotrophic factors play critical role? Curr Alzheimer Res 14(2):208–220

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Barré-Sinoussi F, Montagutelli X (2015) Animal models are essential to biological research: issues and perspectives. Future Sci OA 1(4)

  11. Barré-Sinoussi F, Montagutelli X (2015b) Animal models are essential to biological research: issues and perspectives. Future Scie OA 1(4):FSO63

    Google Scholar 

  12. Belzung C, Lemoine M (2011) Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord 1(1):9

    PubMed  PubMed Central  Article  Google Scholar 

  13. Bracken MB (2009) Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 102(3):120–122

    PubMed  PubMed Central  Article  Google Scholar 

  14. Carbone L, Austin J (2016) Pain and laboratory animals: publication practices for better data reproducibility and better animal welfare. PLoS ONE 11(5):e0155001

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Carlson RV, Boyd KM, Webb DJ (2004) The revision of the Declaration of Helsinki: past, present and future. Br J Clin Pharmacol 57(6):695–713

    PubMed  PubMed Central  Article  Google Scholar 

  16. Casey DA, Antimisiaris D, O’Brien J (2010) Drugs for Alzheimer’s disease: Are they effective? Pharm Ther 35(4):208–211

    Google Scholar 

  17. Cavagnaro J, Silva Lima B (2015) Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products. Eur J Pharmacol 759:51–62

    CAS  PubMed  Article  Google Scholar 

  18. Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42(3):219–232

    CAS  PubMed  Article  Google Scholar 

  19. Duncan T, Valenzuela M (2017) Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 8:111

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28(11):944–949

    CAS  PubMed  Article  Google Scholar 

  21. Engelhardt E, Grinberg LT (2015) Alois Alzheimer and vascular brain disease: arteriosclerotic atrophy of the brain. Dement Neuropsychol 9(1):81–84

    PubMed  PubMed Central  Article  Google Scholar 

  22. Ericsson AC, Crim MJ, Franklin CL (2013) A brief history of animal modeling. Mo Med 110(3):201–205

    PubMed  PubMed Central  Google Scholar 

  23. Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR (2008) Stem cell research and health education. Am J Health Educ Am Alliance Health Phys Educ Recreat Dance 39(3):167–179

    Google Scholar 

  24. Felsenstein KM, Candelario KM, Steindler DA, Borchelt DR (2014) Regenerative medicine in Alzheimer’s disease. Transl Res J Lab Clin Med 163(4):432–438

    Article  Google Scholar 

  25. Fenwick N, Griffin G, Gauthier C (2009) The welfare of animals used in science: how the “Three Rs” ethic guides improvements. Can Vet J 50(5):523–530

    PubMed  PubMed Central  Google Scholar 

  26. Flecknell P (2002) Replacement, reduction and refinement. Altex 19(2):73–78

    PubMed  Google Scholar 

  27. Gauthier S (2012) Pharmacological treatment of Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 8(4):P2

    Article  Google Scholar 

  28. Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour A-R, Sahebjam M, Ghaderi F, Arjmand B (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islamic Repub Iran 29:168

    Google Scholar 

  29. Götz M, Nakafuku M, Petrik D (2016) Neurogenesis in the developing and adult brain—similarities and key differences. Cold Spring Harb Perspect Biol 8(7):a018853

    PubMed  PubMed Central  Article  Google Scholar 

  30. Held JR (1983) Appropriate animal models. Ann N Y Acad Sci 406(1):13–19

    CAS  PubMed  Article  Google Scholar 

  31. Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108

    PubMed  PubMed Central  Google Scholar 

  32. Hirsch EC (2007) Animal models in neurodegenerative diseases. Neuropsychiatric disorders an integrative approach. Springer, New York, pp 87–90

    Google Scholar 

  33. Hunsberger JG, Rao M, Kurtzberg J, Bulte JWM, Atala A, LaFerla FM, Greely HT, Sawa A, Gandy S, Schneider LS, Doraiswamy PM (2016) Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol 15(2):219–230

    PubMed  Article  Google Scholar 

  34. Jankowsky JL, Zheng H (2017) Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):89

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Jin K, Simpkins JW, Ji X, Leis M, Stambler I (2014) The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis 6(1):1–5

    PubMed  PubMed Central  Article  Google Scholar 

  36. Johnson IP (2015) Age-related neurodegenerative disease research needs aging models. Front Aging Neurosci 7:168

    PubMed  PubMed Central  Article  Google Scholar 

  37. Johnson KA, Fox NC, Sperling RA, Klunk WE (2012) Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2(4):a006213–a006213

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, Klingel K, Reischl G, Widmaier S, Rocken M, Nutt RE, Machulla HJ, Uludag K, Cherry SR, Claussen CD, Pichler BJ (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465

    CAS  PubMed  Article  Google Scholar 

  39. Kandel ER, Schwartz JH, Jessell TM, Biochemistry DO, Jessell MBT, Siegelbaum S, Hudspeth A (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  40. Kitazawa M, Medeiros R, Laferla FM (2012) Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des 18(8):1131–1147

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Koba W, Jelicks LA, Fine EJ (2013) MicroPET/SPECT/CT imaging of small animal models of disease. Am J Pathol 182(2):319–324

    CAS  PubMed  Article  Google Scholar 

  42. Kobayashi DT, Chen KS (2005) Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer’s disease. Genes Brain Behav 4(3):173–196

    CAS  PubMed  Article  Google Scholar 

  43. LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harbor Perspect Med 2(11):a006320

    Article  CAS  Google Scholar 

  44. Laurijssens B, Aujard F, Rahman A (2013) Animal models of Alzheimer’s disease and drug development. Drug Discov Today Technol 10(3):e319–e327

    PubMed  Article  Google Scholar 

  45. Li X, Bao X, Wang R (2016) Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening. Int J Mol Med 37(2):271–283

    CAS  PubMed  Article  Google Scholar 

  46. Lopes JP, Oliveira CR, Agostinho P (2010) Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: the role of Cdk5. Aging Cell 9(1):64–77

    CAS  PubMed  Article  Google Scholar 

  47. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Marcus C, Mena E, Subramaniam RM (2014) Brain PET in the diagnosis of Alzheimer’s disease. Clin Nucl Med 39(10):e413–e426

    PubMed  PubMed Central  Article  Google Scholar 

  49. Mineur YS, McLoughlin D, Crusio WE, Sluyter F (2005) Genetic mouse models of Alzheimer’s disease. Neural Plast 12(4):299–310

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Moran CJ, Ramesh A, Brama PAJ, O’Byrne JM, O’Brien FJ, Levingstone TJ (2016) The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 3(1):1

    PubMed  PubMed Central  Article  Google Scholar 

  51. Neugroschl J, Wang S (2011) Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 78(4):596–612

    PubMed  PubMed Central  Article  Google Scholar 

  52. Newman M, Kretzschmar D, Khan I, Chen M, Verdile G, Lardelli M (2017) Animal models of Alzheimer’s disease. In: Conn PM (ed) Animal models for the study of human disease, vol 40, 2nd edn. Academic Press, Cambridge, pp 1031–1085

    Google Scholar 

  53. Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M (2016) Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res Bull 122:1–11

    CAS  PubMed  Article  Google Scholar 

  54. Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O (2014a) Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem Pharmacol 88(4):450–467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O (2014b) Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem Pharmacol 88(4):450–467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Regan T (1987) The case for animal rights. Advances in animal welfare science 1986/87. Springer, New York, pp 179–189

    Google Scholar 

  57. Regenberg A, Mathews DJH, Blass DM, Bok H, Coyle JT, Duggan P, Faden R, Finkel J, Gearhart JD, Hillis A, Hoke A, Johnson R, Johnston M, Kahn J, Kerr D, King P, Kurtzberg J, Liao SM, McDonald JW, McKhann G, Nelson KB, Rao M, Siegel AW, Smith K, Solter D, Song H, Sugarman J, Vescovi A, Young W, Greely HT, Traystman RJ (2009) The role of animal models in evaluating reasonable safety and efficacy for human trials of cell-based interventions for neurologic conditions. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29(1):1–9

    Article  Google Scholar 

  58. Reiman EM, Jagust WJ (2012) Brain imaging in the study of Alzheimer’s disease. Neuroimage 61(2):505–516

    PubMed  Article  Google Scholar 

  59. Rice J (2012) Animal models: not close enough. Nature 484:S9

    PubMed  Article  Google Scholar 

  60. Sabbagh MN, Chen K, Rogers J, Fleisher AS, Liebsack C, Bandy D, Belden C, Protas H, Thiyyagura P, Liu X, Roontiva A, Luo J, Jacobson S, Malek-Ahmadi M, Powell J, Reiman EM (2015) Florbetapir PET, FDG PET, and MRI in down syndrome individuals with and without Alzheimer’s Dementia. Alzheimer’s Dement J Alzheimer’s Assoc 11(8):994–1004

    Article  Google Scholar 

  61. Sarasa M, Pesini P (2009) Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr Alzheimer Res 6(2):171–178

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS (2017) “Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2:28

    PubMed  PubMed Central  Article  Google Scholar 

  63. Sikes RS, Bryan JA 2nd (2016) Institutional animal care and use committee considerations for the use of wildlife in research and education. ILAR J 56(3):335–341

    PubMed  Article  CAS  Google Scholar 

  64. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx J Am Soc Exp Neuro Ther 2(3):423–437

    Google Scholar 

  65. Steindler DA (2007) Stem cells, regenerative medicine, and animal models of disease. ILAR J 48(4):323–338

    CAS  PubMed  Article  Google Scholar 

  66. Sunderland T, Tariot PN, Weingartner H, Murphy DL, Newhouse PA, Mueller EA, Cohen RM (1986) Pharmacologic modelling of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10(3–5):599–610

    CAS  PubMed  Article  Google Scholar 

  67. Swerdlow RH (2007) Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2(3):347–359

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang J (2012) How close is the stem cell cure to the Alzheimer’s disease: Future and beyond? Neural Regen Res 7(1):66–71

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2(5):a006148

    PubMed  PubMed Central  Article  Google Scholar 

  70. Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164(4):1285–1300

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5(1):11

    PubMed  PubMed Central  Article  Google Scholar 

  72. Wang Z, Peng W, Zhang C, Sheng C, Huang W, Wang Y, Fan R (2015) Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: a systematic review and meta-analysis. Sci Rep 5:12134

    PubMed  PubMed Central  Article  Google Scholar 

  73. Ward P, Blanchard R, Bolivar V (2008) Recognition and alleviation of distress in laboratory animals. National Academies Press, Washington

    Google Scholar 

  74. Williamson J, Goldman J, Marder KS (2009) Genetic aspects of Alzheimer disease. Neurologist 15(2):80–86

    PubMed  PubMed Central  Article  Google Scholar 

  75. Wilson RS, Barral S, Lee JH, Leurgans SE, Foroud TM, Sweet RA, Graff-Radford N, Bird TD, Mayeux R, Bennett DA (2011) Heritability of different forms of memory in the late onset Alzheimer’s disease family study. J Alzheimers Dis 23(2):249–255

    PubMed  PubMed Central  Article  Google Scholar 

  76. Wurst W (2016) Animal models are valid to uncover disease mechanisms. PLoS Genet 12(5):e1006013

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Zangrossi H Jr, Graeff FG (1997) Behavioral validation of the elevated T-maze, a new animal model of anxiety. Brain Res Bull 44(1):1–5

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mohsen khorshidi, Shokouh Salimi for their considerable assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, P., Payab, M., Alavi-Moghadam, S. et al. Development and validation of Alzheimer’s Disease Animal Model for the Purpose of Regenerative Medicine. Cell Tissue Bank 20, 141–151 (2019). https://doi.org/10.1007/s10561-019-09773-8

Download citation

Keywords

  • Age-related
  • Alzheimer’s disease
  • Animal model
  • Regenerative medicine
  • Validation