Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank

Abstract

Human samples are commonly collected and long-term stored in biobanks for current and future analyses. Even though techniques for freezing human blood are well established, the storage time can compromise the cell viability as well as the yield and quality of nucleic acids (RNA and DNA) extracted from them. In this study, a protocol to obtain peripheral blood mononuclear cells (PBMCs) from 70 subjects, which were stored at − 196 °C from EDTA tubes for a long-term, was assessed. In parallel; a protocol to obtain DNA from the same subjects, which were stored at − 80 °C from citrate tubes, was also studied. Samples stored from 2008 to 2012 were studied and the results obtained showed that there were no statistically significant differences in the RNA or DNA extracted in terms of purity, integrity and functionality The freezing protocol used by the Málaga Biobank shows that viable PBMCs and DNA could be kept for a period of, at least, 10 years, with a high quality and performance. Furthermore, RNA extracted from these PBMCs presents also a good quality and performance. Therefore, the samples frozen according to the conditions of the protocols assessed in this study could be optimal for biomedical research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abba ML et al (2017) MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett 387:84–94

    Article  CAS  PubMed  Google Scholar 

  2. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahn SJ et al (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre-or post-PCR. Nucleic Acids Res 24:2623–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arosio B et al (2014) Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. Biomed Res Int 2014:169203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aziz N et al (2013) Value of a quality assessment program in optimizing cryopreservation of peripheral blood mononuclear cells in a multicenter study. Clin Vaccine Immunol 20:590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbaro A et al (2004) Detection of STRs from body fluid collected on IsoCode paper-based devices. Forensic Sci Int 2(146 Suppl):S127–S128

    Article  CAS  Google Scholar 

  7. Bastard JP et al (2002) RNA isolation and purification methods. Ann Biol Clin 60(5):513–523

    CAS  Google Scholar 

  8. Best A et al (2007) Issues concerning the large scale cryopreservation of peripheral blood mononuclear cells (PBMC) for immunotherapy trials. Cryobiology 54:294–297

    Article  CAS  PubMed  Google Scholar 

  9. Bourguignon P et al (2014) Processing of blood samples influences PBMC viability and outcome of cell-mediated immune responses in antiretroviral therapy-naive HIV-1-infected patients. J Immunol Methods 414:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Calleros-Basilio L et al (2016) Quality assurance of samples and processes in the spanish renal research network (REDinREN) biobank. Biopreserv Biobank 14(6):499–510

    Article  CAS  PubMed  Google Scholar 

  11. Chaisomchit S et al (2005) Stability of genomic DNA in dried blood spots stored on filter paper. Southeast Asian J Trop Med Public Health 36(1):270–273

    CAS  PubMed  Google Scholar 

  12. Cheret A et al (2015) Intensive five-drug antiretroviral therapy regimen versus standard triple-drug therapy during primary HIV-1 infection (OPTIPRIM-ANRS 147): a randomised, open-label, phase 3 trial. Lancet Infect Dis 15:387–396

    Article  CAS  PubMed  Google Scholar 

  13. Consuegra I et al (2017) Isolation methods of peripheral blood mononuclear cells in spanish biobanks: an overview. Biopreserv Biobank 15(4):305–309

    Article  CAS  PubMed  Google Scholar 

  14. Coolins A et al (2017) Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic Biol Med 107:69–76

    Article  CAS  Google Scholar 

  15. De Souza YG et al (2013) Biobanking past, present and future: responsibilities and benefits. AIDS 27(3):303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Debey-Pascher S et al (2011) RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis. J Mol Diagn 13(4):452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Francesco A et al (2015) Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain Behav Immun 45:139–144

    Article  CAS  PubMed  Google Scholar 

  18. Di Prieto F et al (2011) Genomic DNA extraction from whole blood stored from 15- to 30-years at -20 & #xB0;C by rapid phenol-chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25(1):44–48

    Article  CAS  Google Scholar 

  19. Duale N et al (2014) Long-term storage of blood RNA collected in RNA stabilizing Tempus tubes in a large biobank-evaluation of RNA quality and stability. BMC Res Notes 7:633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franco-Tormo MJ, Salas-Crisostomo M, Rocha NB, Budde H, Machado S, Murillo-Rodríguez E (2018) CRISPR/Cas9, the powerful new genome-editing tool for putative therapeutics in obesity. J Mol Neurosci. https://doi.org/10.1007/s12031-018-1076-4

    Article  PubMed  Google Scholar 

  21. Gauffin F et al (2009) Quantitation of RNA decay in dried blood spots during 20 years of storage. Clin Chem Lab Med 47(12):1467–1469

    Article  CAS  PubMed  Google Scholar 

  22. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Article  CAS  PubMed  Google Scholar 

  23. Hara M et al (2016) Effects of storage conditions on forensic examinations of blood samples and bloodstains stored for 20 years. Leg Med 18:81–84

    Article  CAS  Google Scholar 

  24. Harris SA et al (2014) Process of assay selection and optimization for the study of case and control samples from a phase IIb efficacy trial of a candidate tuberculosis vaccine, MVA85A. Clin Vaccine Immunol 21:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holden MJ et al (2009) Factors affecting quantification of total DNA by UV spectroscopy and PicoGreen fluorescence. J Agric Food Chem 57(16):7221–7226

    Article  CAS  Google Scholar 

  26. Huang LH et al (2017) The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS ONE 12(9):e0184692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ivanova NV et al (2013) Protocols for dry DNA storage and shipment at room temperature. Mol. Ecol. Resour 13(5):890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jolly P et al (2016) Oligonucleotide-based systems: DNA, microRNAs DNA/RNA aptamers. Essays Biochem 60(1):27–35

    Article  PubMed  PubMed Central  Google Scholar 

  29. Junge A et al (2002) Successful DNA typing of a urine sample in a doping control case using human mitochondrial DNA analysis. J Forensic Sci 47(5):1022–1024

    Article  CAS  PubMed  Google Scholar 

  30. Karlsson H et al (2003) Extraction of RNA from dried blood on filter papers after long-term storage. Clin Chem 49(6):979–981

    Article  CAS  PubMed  Google Scholar 

  31. Kenmochi T et al (2008) Cryopreservation of human pancreatic islets from non-heart-beating donors using hydroxyethyl starch and dimethyl sulfoxide as cryoprotectants. Cell Transplant 17:61–67

    Article  PubMed  Google Scholar 

  32. Lahiri DK et al (1993) DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storagetime, and temperature on DNA yield and quality. Biochem Genet 31(7–8):321–328

    Article  CAS  PubMed  Google Scholar 

  33. Loenen WA et al (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42(1):3–19

    Article  CAS  Google Scholar 

  34. Luciano AM et al (2009) Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes. Cryobiology 59:90–95

    Article  PubMed  Google Scholar 

  35. Mlotshwa M et al (2010) Fluidity of HIV-1-specific T-cell responses during acute and early subtype C HIV-1 infection and associations with early disease progression. J Virol 84:12018–12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nazarpour R et al (2012) Optimization of human peripheral blood mononuclear cells (PBMCs) cryopreservation. Int J Mol Cell Med 1(2):88–93

    PubMed  PubMed Central  Google Scholar 

  37. Olivieri EH et al (2014) Biobanking practice: RNA storage at low concentration affects integrity. Biopreserv Biobank 12(1):46–52

    Article  PubMed  Google Scholar 

  38. Paskal W, Paskal AM, Dębski T, Gryziak M, Jaworowski J (2018) Aspects of modern biobank activity—comprehensive review. Pathol Oncol Res. https://doi.org/10.1007/s12253-018-0418-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pfeifer GP et al (2011) Next-generation sequencing: emerging lessons on the origins of human cancer. Curr Opin Oncol 23(1):62–68

    Article  PubMed  Google Scholar 

  40. Ramos TV et al (2014) Standardized cryopreservation of human primary cells. Curr Protoc Cell Biol 64:A.3I.1–A.3I.8

    Google Scholar 

  41. Riccio EK et al (2002) Cryopreservation of peripheral blood mononuclear cells does not significantly affect the levels of spontaneous apoptosis after 24-h culture. Cryobiology 45:127–134

    Article  CAS  PubMed  Google Scholar 

  42. Röder B et al (2010) Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J Clin Microbiol 48(11):4260–4262

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sambor A et al (2014) Establishment and maintenance of a PBMC repository for functional cellular studies in support of clinical vaccine trials. J Immunol Methods 409:107–116

    Article  CAS  PubMed  Google Scholar 

  44. Sanchéz AM et al (2014) Introduction to a special issue of the journal of immunological methods: building global resource programs to support HIV/AIDS clinical trial studies. J Immunol Methods 409:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarzotti-Kelsoe M et al (2014) The Center for HIV/AIDS Vaccine Immunology (CHAVI) multi-site quality assurance program for cryopreserved human peripheral blood mononuclear cells. J Immunol Methods 409:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sastre L (2011) New DNA sequencing technologies open a promising era for cancer research and treatment. Clin Transl Oncol 13(5):301–306

    Article  PubMed  Google Scholar 

  47. Seelenfreund E et al (2014) Long term storage of dry versus frozen RNA for next generation molecular studies. PLoS ONE 9(11):e111827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sester M et al (2010) Management of tuberculosis in HIV infection: where T-cells matter. Eur Respir J 35:475–476

    Article  CAS  PubMed  Google Scholar 

  49. Simeon-Dubach D et al (2012) Quality really matters: the need to improve specimen quality in biomedical research. J Pathol 228(4):431–433

    Article  PubMed  Google Scholar 

  50. Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, Taylor A, Lee BH, Russell HV (2018) Clinical application of genome and exome sequencing as a diagnostic tool for pediatric patients: a scoping review of the literature. Genet Med. https://doi.org/10.1038/s41436-018-0024-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith S et al (2005) Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. J Forensic Sci 50(5):1101–1108

    Article  CAS  PubMed  Google Scholar 

  52. Torresi J et al (2004) Neutralising antibody, CTL and dendritic cell responses to hepatitis C virus: a preventative vaccine strategy. Curr Drug Targets 5:41–56

    Article  CAS  PubMed  Google Scholar 

  53. Wang R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q (2012) DNA damage caused by metal nanoparticles: the involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25(7):1402–1411

    Article  CAS  Google Scholar 

  54. Wieczorek L et al (2015) Comparable antigenicity and immunogenicity of oligomeric forms of a novel, acute HIV-1 subtype C gp145 envelope for use in preclinical and clinical vaccine research. J Virol 89:7478–7493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang J et al (2016) The effects of storage temperature on PBMC gene expression. BMC Immunol 17:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang YH et al (1992) RNA analysis from newborn screening dried blood specimens. Hum Genet 89(3):311–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been (partially) supported by Instituto de Salud Carlos III and Red Nacional de Biobancos (Hospital Regional Universitario Carlos Haya, Málaga RD09/0076/0112 and PT13/0010/0006). The authors thank all technical personnel of the genetic platform of the Instituto de Investigación Biomédica de Málaga (IBIMA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Ferro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All individuals gave written informed consent to participate in research prior to blood collection in accordance with the Andalusian Public Health System Biobank located in Málaga, and approved by the Ethics Committee of Clinical Research (CEIC) from IBIMA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortega-Pinazo, J., Díaz, T., Martínez, B. et al. Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank. Cell Tissue Bank 20, 255–265 (2019). https://doi.org/10.1007/s10561-019-09764-9

Download citation

Keywords

  • PBMCs
  • Whole blood
  • Cryopreservation
  • DNA
  • RNA
  • Biobank
  • PCR