Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen

Abstract

The aortic and pulmonary allograft heart valves (AHV) are used in the cardiac surgery for replacing the impaired semilunar valves. They are harvested from donor hearts and cryostored in tissue banks. The expiration period was set to 5 years arbitrarily. We hypothesized that their mechanical and structural properties do not deteriorate after this period. A total of 64 human AHV (31 aortic and 33 pulmonary) of different length of cryopreservation (fresh, 0–5, 5–10, over 10 years) were sampled to different tissue strips (artery, leaflet, ventriculo-arterial junction) and tested by tensile test with loading velocity 10 mm/min until tissue rupture. Neighbouring regions of tissue were processed histologically and evaluated for elastin and collagen area fraction. The results were evaluated statistically. In aortic AHV, the physical deformation response of wall samples to stress did not changed significantly neither during the process of cryopreservation nor during the first 10 years of storage. In pulmonary AHV, the ultimate strain dropped after 5 years of cryopreservation indicating that pulmonary artery was significantly less deformable at the time of rupture. On the other hand, the ultimate stress was equal during the first 10 years of cryostorage. The changes in collagen and elastin amount in the tissue samples were not associated with mechanical impairment. Neither elasticity, stiffness and solidity nor morphology of aortic and pulmonary AHV did not change reasonably with cryopreservation and in the first 10 years of cryostorage. This evidence suggests that the expiration period might be extended in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adham M et al (1996) Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res 64:32–34. https://doi.org/10.1006/jsre.1996.0302

    Article  CAS  PubMed  Google Scholar 

  2. Anastasiadis K, Kambouroglou D, Spanos P (2004) The use of valve homografts and autografts in adult cardiac surgery. Hell J Cardiol 45:36–41

    Google Scholar 

  3. Antunes MJ (2018) Is allograft aortic valve replacement still an option? When, which, where? J Thorac Cardiovasc Surg 156:1366–1367. https://doi.org/10.1016/j.jtcvs.2018.05.011

    Article  PubMed  Google Scholar 

  4. Barrat-Boyes BG (1964) Homograft aortic valve replacement in aortic incompetence and stenosis. Thorax 19:131–150

    Article  Google Scholar 

  5. Barron DJ, Khan NE, Jones TJ, Willets RG, Brawn WJ (2010) What tissue bankers should know about the use of allograft heart valves. Cell Tissue Bank 11:47–55. https://doi.org/10.1007/s10561-009-9132-5

    Article  PubMed  Google Scholar 

  6. Bashey RI, Torii S, Angrist A (1967) Age-related collagen and elastin content of human heart valves. J Gerontol 22:203–208

    Article  CAS  PubMed  Google Scholar 

  7. Bibevski S, Ruzmetov M, Fortuna RS, Turrentine MW, Brown JW, Ohye RG (2017) Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann Thorac Surg 103:869–874. https://doi.org/10.1016/j.athoracsur.2016.07.068

    Article  PubMed  Google Scholar 

  8. Buchanan RM, Sacks MS (2014) Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol 13:813–826. https://doi.org/10.1007/s10237-013-0536-6

    Article  PubMed  Google Scholar 

  9. Burkert J et al (2008) Cryopreserved semilunar heart valve allografts: leaflet surface damage in scanning electron microscopy. Zentralbl Chir 133:367–373. https://doi.org/10.1055/s-2008-1076872

    Article  CAS  PubMed  Google Scholar 

  10. Da Costa ML, Ghofaili FA, Oakley RM (2006) Allograft tissue for use in valve replacement. Cell Tissue Bank 7:337–348. https://doi.org/10.1007/s10561-006-9009-9

    Article  PubMed  Google Scholar 

  11. Duran CG, Gunning AJ (1962) A method for placing a total homologous aortic valve in the subcoronary position. Lancet 2:488–489

    Article  CAS  PubMed  Google Scholar 

  12. Eckert CE et al (2013) On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater 9:4653–4660. https://doi.org/10.1016/j.actbio.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  13. Fonck E, Roy S, Rüfenacht D, Stergiopulos N (2008) Effect of cryopreservation on the mechanical properties of decellularized arteries. J Biomech 41:S71. https://doi.org/10.1016/S0021-9290(08)70071-X

    Article  Google Scholar 

  14. Grosse K, Meyer R, Schmitzer E, Hetzer R, Wesslau C (2008) Are heart valves from donors over 65 years of age morphologically suitable for transplantation? Cell Tissue Bank 9:31–36. https://doi.org/10.1007/s10561-007-9052-1

    Article  PubMed  Google Scholar 

  15. Heimbecker RO, Baird RJ, Lajos TZ, Varga AT, Greenwood WF (1962) Homograft replacement of the human mitral valve. A preliminary report. Can Med Assoc J 86:805–809

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46. https://doi.org/10.1146/annurev-physiol-012110-142145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hlubocky J et al (2011) Mechanical properties of mitral allografts are not reasonably influenced by cryopreservation in sheep model. Physiol Res 60:475–482

    CAS  PubMed  Google Scholar 

  18. Hopkins RA (2005) Cardiac reconstructions with allograft tissues. Springer, New York. https://doi.org/10.1007/b137730

    Google Scholar 

  19. Jashari R, Van Hoeck B, Tabaku M, Vanderkelen A (2004) Banking of the human heart valves and the arteries at the European homograft bank (EHB)—overview of a 14-year activity in this International Association in Brussels. Cell Tissue Bank 5:239–251. https://doi.org/10.1007/s10561-004-1441-0

    Article  CAS  PubMed  Google Scholar 

  20. Kochová P, Kuncová J, Svíglerová J, Cimrman R, Miklíková M, Liška V, Tonar Z (2012) The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries. Physiol Meas 33:1335–1351. https://doi.org/10.1088/0967-3334/33/8/1335

    Article  PubMed  Google Scholar 

  21. Kubíková T, Kochová P, Fiala R, Špatenka J, Burkert J, Králíčková M, Tonar Z (2016) Histological composition and mechanical properties of cryopreserved samples of aortic and pulmonary valves. Solid State Phenom 258:341–344. https://doi.org/10.4028/www.scientific.net/SSP.258.341

    Article  Google Scholar 

  22. Kubíková T, Kochová P, Brázdil J, Špatenka J, Burkert J, Králíčková M, Tonar Z (2017) The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps. Ann Anat 212:17–26. https://doi.org/10.1016/j.aanat.2017.03.004

    Article  PubMed  Google Scholar 

  23. Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: Structure and mechanical properties. Prog Mater Sci 53:1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002

    Article  CAS  Google Scholar 

  24. Mouton PR (2002) Principles and practices of unbiased stereology: an introduction for bioscientists. Johns Hopkins University Press, Baltimore

    Google Scholar 

  25. Muresian H (2016) The clinical anatomy of the right ventricle. Clin Anat 29:380–398. https://doi.org/10.1002/ca.22484

    Article  PubMed  Google Scholar 

  26. Muresian H (2018) Clinical and surgical anatomy of the aortic root. In: Vojacek J, Zacek P, Dominik J (eds) Aortic regurgitation. Springer, Cham, pp 7–19

    Google Scholar 

  27. Pfitzner R et al (2018) Influence of cryopreservation on structural, chemical, and immunoenzymatic properties of aortic valve allografts. Transpl Proc 50:2195–2198. https://doi.org/10.1016/j.transproceed.2018.04.025

    Article  CAS  Google Scholar 

  28. Ross DN (1962) Homograft replacement of the aortic valve. Lancet 2:487

    Article  CAS  PubMed  Google Scholar 

  29. Ross DN (1967) Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2:956–958

    Article  CAS  PubMed  Google Scholar 

  30. Ross DN, Somerville J (1966) Correction of pulmonary atresia with a homograft aortic valve. Lancet 2:1446–1447

    Article  CAS  PubMed  Google Scholar 

  31. Simmons CA (2009) Aortic valve mechanics: an emerging role for the endothelium. J Am Coll Cardiol 53:1456–1458. https://doi.org/10.1016/j.jacc.2008.12.052

    Article  PubMed  Google Scholar 

  32. Spatenka J, Burkert J (2018) Allograft heart valve in aortic valve surgery. In: Vojacek J, Zacek P, Dominik J (eds) Aortic regurgitation. Springer, Cham, pp 155–168

    Google Scholar 

  33. Spatenka J et al (1997) Preparation, storage, transportation and use of heart valves for allotransplantation. Rozhl Chir 76:118–125

    CAS  PubMed  Google Scholar 

  34. Stemper BD, Yoganandan N, Stineman MR, Gennarelli TA, Baisden JL, Pintar FA (2007) Mechanics of fresh, refrigerated, and frozen arterial tissue. J Surg Res 139:236–242. https://doi.org/10.1016/j.jss.2006.09.001

    Article  PubMed  Google Scholar 

  35. Stoliński J et al (2006) Allogenic heart valve bank in the Department of Cardiovascular Surgery and Transplantology of Jagiellonian University in Cracow—23 years experience in the treatment of aortic valve or aortic root diseases. Cell Tissue Bank 7:175–182. https://doi.org/10.1007/s10561-004-7989-x

    Article  PubMed  Google Scholar 

  36. Tonar Z, Kubíková T, Prior C, Demjén E, Liška V, Králíčková M, Witter K (2015) Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta. Ann Anat 201:79–90. https://doi.org/10.1016/j.aanat.2015.05.005

    Article  PubMed  Google Scholar 

  37. Vesely I (1998) The role of elastin in aortic valve mechanics. J Biomech 31:115–123

    Article  CAS  PubMed  Google Scholar 

  38. Viidik A (1979) Biomechanical behavior of soft connective tissues. In: Akkas N (ed) Progress in biomechanics. Hardbound, Sijthoff & Nordhoff, pp 75–113

    Google Scholar 

  39. Vincent JFV (1990) Structural biomaterials. Princeton University Press, Princeton

    Google Scholar 

  40. Vojacek J, Zacek P, Dominik J (2018) Aortic regurgitation. Springer, Cham. https://doi.org/10.1007/978-3-319-74213-7

    Google Scholar 

  41. Yacoub M et al (1995) Fourteen-year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 110:186–193. https://doi.org/10.1016/S0022-5223(05)80025-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project LO1506 of the Czech Ministry of Education, Youth and Sports under the program NPU I, from European Regional Development Fund-Project “Application of Modern Technologies in Medicine and Industry” (No. CZ.02.1.01/0.0/0.0/17_048/0007280), by the National Sustainability Program I (NPU I) Nr. LO1503, and by the Charles University Research Fund—Progres Q39.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radovan Fiala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiala, R., Kochová, P., Kubíková, T. et al. Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen. Cell Tissue Bank 20, 221–241 (2019). https://doi.org/10.1007/s10561-019-09762-x

Download citation

Keywords

  • Heart valve allograft
  • Homograft
  • Cryopreservation
  • Tissue banking
  • Mechanical characteristics
  • Structural changes