Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration

Abstract

The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abarrategi A, Lopiz-Morales Y, Ramos V, Civantos A, Lopez-Duran L, Marco F, Lopez-Lacomba JL (2010) Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res Part A 95:1132–1141. https://doi.org/10.1002/jbm.a.32912

    Article  CAS  Google Scholar 

  2. Agoston H, Khan S, James CG, Gillespie JR, Serra R, Stanton LA, Beier F (2007) C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and -independent pathways. BMC Dev Biol 7:18. https://doi.org/10.1186/1471-213x-7-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Augst A et al (2008) Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J R Soc Interface 5:929–939. https://doi.org/10.1098/rsif.2007.1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhardwaj N, Kundu SC (2012) Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33:2848–2857. https://doi.org/10.1016/j.biomaterials.2011.12.028

    Article  CAS  PubMed  Google Scholar 

  5. Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32:5773–5781. https://doi.org/10.1016/j.biomaterials.2011.04.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C (2016) Articular cartilage: from formation to tissue engineering. Biomater Sci. https://doi.org/10.1039/c6bm00068a

    Article  PubMed  Google Scholar 

  7. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395. https://doi.org/10.1016/j.bone.2009.09.031

    Article  CAS  PubMed  Google Scholar 

  8. Chlapanidas T et al (2011) Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder-layer: a new product for cartilage advanced therapy. Tissue Eng Part A 17:1725–1733. https://doi.org/10.1089/ten.TEA.2010.0636

    Article  CAS  PubMed  Google Scholar 

  9. Cotter EJ, Wang KC, Yanke AB, Chubinskaya S (2018) Bone marrow aspirate concentrate for cartilage defects of the knee: from bench to bedside evidence. Cartilage 9:161–170. https://doi.org/10.1177/1947603517741169

    Article  CAS  PubMed  Google Scholar 

  10. Cucchiarini M, Madry H (2014) Use of tissue engineering strategies to repair joint tissues in osteoarthritis: viral gene transfer approaches. Curr Rheumatol Rep 16:449. https://doi.org/10.1007/s11926-014-0449-0

    Article  CAS  PubMed  Google Scholar 

  11. Cucchiarini M, Madry H, Guilak F, Saris DB, Stoddart MJ, Koon Wong M, Roughley P (2014) A vision on the future of articular cartilage repair. Eur Cells Mater 27:12–16

    Article  CAS  Google Scholar 

  12. Frisch J, Venkatesan JK, Rey-Rico A, Madry H, Cucchiarini M (2015) Current progress in stem cell-based gene therapy for articular cartilage repair. Curr Stem Cell Res Ther 10:121–131

    Article  CAS  PubMed  Google Scholar 

  13. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D (2012) Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech 1:e175–e180. https://doi.org/10.1016/j.eats.2012.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang X et al (2017) TGF-beta1 is involved in vitamin D-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating the ERK/JNK pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 42:2230–2241. https://doi.org/10.1159/000479997

    Article  CAS  Google Scholar 

  15. Kim JD et al (2014) Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol Orthop Traumatol 24:1505–1511. https://doi.org/10.1007/s00590-013-1393-9

    Article  Google Scholar 

  16. Kocamaz E, Gok D, Cetinkaya A, Tufan AC (2012) Implication of C-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF-beta1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells. J Mol Histol 43:497–508. https://doi.org/10.1007/s10735-012-9430-2

    Article  CAS  PubMed  Google Scholar 

  17. Kwon H, Sun L, Cairns DM, Rainbow RS, Preda RC, Kaplan DL, Zeng L (2013) The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater 9:6563–6575. https://doi.org/10.1016/j.actbio.2013.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16. https://doi.org/10.1016/j.actbio.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Nakao K et al (2015) The local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth. Sci Rep 5:10554. https://doi.org/10.1038/srep10554

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Jt Surg Am 80:1795–1812

    Article  Google Scholar 

  21. Olney RC (2006) C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res 16 Suppl A:S6-14. https://doi.org/10.1016/j.ghir.2006.03.016

    CAS  Article  PubMed  Google Scholar 

  22. Orozco L et al (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95:1535–1541. https://doi.org/10.1097/TP.0b013e318291a2da

    Article  CAS  PubMed  Google Scholar 

  23. Peake NJ, Bader DL, Vessillier S, Ramachandran M, Salter DM, Hobbs AJ, Chowdhury TT (2015) C-type natriuretic peptide signalling drives homeostatic effects in human chondrocytes. Biochem Biophys Res Commun 465:784–789. https://doi.org/10.1016/j.bbrc.2015.08.087

    Article  CAS  PubMed  Google Scholar 

  24. Safran MR, Seiber K (2010) The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg 18:259–266

    Article  PubMed  Google Scholar 

  25. Shi Q, Qian ZY, Liu C, Guo XM, Xu J (2015) Construction and identification of recombinant adenovirus vector carrying C-type natriuretic peptide gene. Chin J Prosthodont 16:325–329

    Google Scholar 

  26. Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  PubMed  Google Scholar 

  27. Tezcan B, Serter S, Kiter E, Tufan AC (2010) Dose dependent effect of C-type natriuretic peptide signaling in glycosaminoglycan synthesis during TGF-beta1 induced chondrogenic differentiation of mesenchymal stem cells. J Mol Histol 41:247–258. https://doi.org/10.1007/s10735-010-9284-4

    Article  CAS  PubMed  Google Scholar 

  28. Vishwanath V, Pramanik K, Biswas A (2016) Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J Biomater Sci Polym Ed 27:657–674. https://doi.org/10.1080/09205063.2016.1148303

    Article  CAS  PubMed  Google Scholar 

  29. Waldman SD, Usmani Y, Tse MY, Pang SC (2008) Differential effects of natriuretic peptide stimulation on tissue-engineered cartilage. Tissue Eng Part A 14:441–448. https://doi.org/10.1089/tea.2007.0035

    Article  CAS  PubMed  Google Scholar 

  30. Welton KL, Logterman S, Bartley JH, Vidal AF, McCarty EC (2018) knee cartilage repair and restoration: common problems and solutions. Clin Sports Med 37:307–330. https://doi.org/10.1016/j.csm.2017.12.008

    Article  PubMed  Google Scholar 

  31. Yang H et al (2013) Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 34:7033–7047. https://doi.org/10.1016/j.biomaterials.2013.05.025

    Article  CAS  Google Scholar 

  32. Ye K et al (2014) Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PloS ONE 9:e99410. https://doi.org/10.1371/journal.pone.0099410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials 30:58–70. https://doi.org/10.1016/j.biomaterials.2008.08.041

    Article  CAS  Google Scholar 

  34. Zhang Q, Lu H, Kawazoe N, Chen G (2014) Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater 10:2005–2013. https://doi.org/10.1016/j.actbio.2013.12.042

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Tan K, Zhou Y, Ye Z, Tan WS (2016) A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(epsilon-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 59:193–202. https://doi.org/10.1016/j.msec.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  36. Zhu S, Zhang B, Man C, Ma Y, Liu X, Hu J (2014) Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Cell Transpl 23:715–727. https://doi.org/10.3727/096368913x669770

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant from the National Natural Science Foundation of China (No. 51472270).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ning Wen or Juan Xu or Ximin Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Qian, Z., Liu, D. et al. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell Tissue Bank 20, 209–220 (2019). https://doi.org/10.1007/s10561-019-09760-z

Download citation

Keywords

  • Cartilage tissue engineering
  • Gene transfection
  • C-type natriuretic peptide
  • Chitosan/silk fibroin scaffolds