The addition of albumin improves Schwann cells viability in nerve cryopreservation

Abstract

The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4′,6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Arav A, Friedman O, Natan Y, Gur E, Shani N (2017) Rat hindlimb cryopreservation and transplantation: a step toward « organ banking». Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 17(11):2820–2828

    CAS  Article  Google Scholar 

  2. Arnaud F (1992) Future in cryopreservation. Int J Artif Organs 15(11):637–640

    CAS  Article  PubMed  Google Scholar 

  3. Bakhach J, Casoli V, Guimberteau J-C (2007) The cryopreservation of composite tissues: principle, literature review and preliminary results of our own experiments. Ann Chir Plast Esthét 52(5):531–547

    CAS  Article  PubMed  Google Scholar 

  4. Borderie VM, Lopez M, Lombet A, Carvajal-Gonzalez S, Cywiner C, Laroche L (1998) Cryopreservation and culture of human corneal keratocytes. Investig Ophthalmol Vis Sci 39(8):1511–1519

    CAS  Google Scholar 

  5. Cui X, Gao DY, Fink BF, Vasconez HC, Rinker B (2007) Cryopreservation of composite tissues and transplantation: preliminary studies. Cryobiology 55(3):295–304

    CAS  Article  PubMed  Google Scholar 

  6. Decherchi P, Lammari-Barreault N, Cochard P, Carin M, Réga P, Pio J et al (1997) CNS axonal regeneration with peripheral nerve grafts cryopreserved by vitrification: cytological and functional aspects. Cryobiology 34(3):214–239

    CAS  Article  PubMed  Google Scholar 

  7. Delbosc B, Herve P, Carbillet JP, Montard M (1984) Corneal cryopreservation in man: a proposal for an original technic. J Fr Ophtalmol 7(4):321–331

    CAS  PubMed  Google Scholar 

  8. Díaz Rodríguez R, Van Hoeck B, De Gelas S, Blancke F, Ngakam R, Bogaerts K et al (2017) Determination of residual dimethylsulfoxide in cryopreserved cardiovascular allografts. Cell Tissue Bank 18(2):263–270

    Article  CAS  PubMed  Google Scholar 

  9. Dubernard J-M, Devauchelle B (2008) Face transplantation. Lancet 372(9639):603–604

    Article  PubMed  Google Scholar 

  10. Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP et al (1995) Regeneration across preserved peripheral nerve grafts. Muscle Nerve 18(10):1128–1138

    CAS  Article  PubMed  Google Scholar 

  11. Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y et al (1998) Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 21(11):1507–1522

    CAS  Article  PubMed  Google Scholar 

  12. Fairbairn NG, Ng-Glazier J, Meppelink AM, Randolph MA, Valerio IL, Fleming ME et al (2016) Light-activated sealing of acellular nerve allografts following nerve gap injury. J Reconstr Microsurg 32(6):421–430

    Article  PubMed  Google Scholar 

  13. Fansa H, Lassner F, Kook PH, Keilhoff G, Schneider W (2000) Cryopreservation of peripheral nerve grafts. Muscle Nerve 23(8):1227–1233

    CAS  Article  PubMed  Google Scholar 

  14. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM et al (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35(6):530–542

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Grogan SP, Aklin B, Frenz M, Brunner T, Schaffner T, Mainil-Varlet P (2002) In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198(1):5–13

    Article  PubMed  Google Scholar 

  16. Gurina TM, Pakhomov AV, Polyakova AL, Legach EI, Bozhok GA (2016) The development of the cell cryopreservation protocol with controlled rate thawing. Cell Tissue Bank 17(2):303–316

    Article  PubMed  Google Scholar 

  17. Hirasé Y, Kojima T, Uchida M, Takeishi M (1992) Cryopreserved allogeneic vessel and nerve grafts: hind-limb replantation model in the rat. J Reconstr Microsurg 8(6):437–443 discussion 445–446

    Article  PubMed  Google Scholar 

  18. Jensen S, Wallace MN, Dahlerup B (1990) Cryopreservation of rat peripheral nerve segments later used for transplantation. Neuroreport 1(3–4):243–246

    CAS  Article  PubMed  Google Scholar 

  19. Jung H, Kim N, Yoon M (2016) Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells. Anim Reprod Sci 173:24–28

    CAS  Article  PubMed  Google Scholar 

  20. Kiroshka V, Trutaieva I, Bondarenko T (2017) Efficiency of mannitol-supplemented medium during adding/removing ovarian tissue with penetrating cryoprotective agents. Cell Tissue Bank 19(1):123–132

    Article  CAS  PubMed  Google Scholar 

  21. Krausz MM, Ashkenazi I, Alfici R (2017) Parathyroid autotransplantation in adults and children. Harefuah 156(3):167–170

    PubMed  Google Scholar 

  22. Lassner F, Becker M, Fansa H, Walter GF, Berger A (1995) Preservation of peripheral nerve grafts: a comparison of normal saline, HTK organ preservation solution, and DMEM Schwann cell culture medium. J Reconstr Microsurg 11(6):447–453

    CAS  Article  PubMed  Google Scholar 

  23. Li H, Cao H, Guo X, Wang H (2017) Cryovial monolayer vitrification for ovarian tissue cryopreservation. Cell Tissue Bank 19(1):149–154

    Article  CAS  PubMed  Google Scholar 

  24. Lisy M, Kalender G, Schenke-Layland K, Brockbank KGM, Biermann A, Stock UA (2017) Allograft heart valves: current aspects and future applications. Biopreserv Biobank 15(2):148–157

    CAS  Article  Google Scholar 

  25. Ma Y-S, Weng S-W, Lin M-W, Lu C-C, Chiang J-H, Yang J-S et al (2012) Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 50(5):1271–1278

    CAS  Article  Google Scholar 

  26. Mackinnon SE (1989) New directions in peripheral nerve surgery. Ann Plast Surg 22(3):257–273

    CAS  Article  PubMed  Google Scholar 

  27. Martinez-Madrid B, Dolmans M-M, Langendonckt AV, Defrère S, Van Eyck A-S, Donnez J (2004) Ficoll density gradient method for recovery of isolated human ovarian primordial follicles. Fertil Steril 82(6):1648–1653

    Article  PubMed  Google Scholar 

  28. Nakamura Y, Obata R, Okuyama N, Aono N, Hashimoto T, Kyono K (2017) Residual ethylene glycol and dimethyl sulphoxide concentration in human ovarian tissue during warming/thawing steps following cryopreservation. Reprod Biomed Online 35(3):311–313

    CAS  Article  PubMed  Google Scholar 

  29. Pianigiani E, Tognetti L, Ierardi F, Mariotti G, Rubegni P, Cevenini G et al (2016) Assessment of cryopreserved donor skin viability: the experience of the regional tissue bank of Siena. Cell Tissue Bank 17(2):241–253

    CAS  Article  PubMed  Google Scholar 

  30. Rendal Vázquez ME, Rodríguez Cabarcos M, Fernández Mallo RO, Sánchez Ibáñez J, Segura Iglesias R, Bermúdez González T et al (2004) Functional assessment of human femoral arteries after cryopreservation. Cryobiology 49(1):83–89

    Article  CAS  Google Scholar 

  31. Routledge C, Armitage WJ (2003) Cryopreservation of cornea: a low cooling rate improves functional survival of endothelium after freezing and thawing. Cryobiology 46(3):277–283

    CAS  Article  PubMed  Google Scholar 

  32. Ruwe PA, Trumble TE (1990) A functional evaluation of cryopreserved peripheral nerve autografts. J Reconstr Microsurg 6(3):239–244

    CAS  Article  PubMed  Google Scholar 

  33. Schneider M, Stamm C, Brockbank KGM, Stock UA, Seifert M (2017) The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci Rep 7(1):17027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shabani Nashtaei M, Nekoonam S, Naji M, Bakhshalizadeh S, Amidi F (2017) Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation. Cell Tissue Bank 19(1):87–95

    Article  CAS  PubMed  Google Scholar 

  35. Sriuttha W, Uttamo N, Kongkaew A, Settakorn J, Rattanasalee S, Kongtawelert P et al (2016) Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation. Cell Tissue Bank 17(4):721–734

    CAS  Article  PubMed  Google Scholar 

  36. Trumble TE, Whalen JT (1992) The effects of cryosurgery and cryoprotectants on peripheral nerve function. J Reconstr Microsurg 8(1):53–58 discussion 59–60

    CAS  Article  PubMed  Google Scholar 

  37. Yang I-H, Shin J-A, Lee K-E, Kim J, Cho N-P, Cho S-D (2017) Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2AX. Eur J Oral Sci 125(6):438–443

    CAS  Article  PubMed  Google Scholar 

  38. Zalewski AA, Fahy GM, Azzam NA, Azzam RN (1993) The fate of cryopreserved nerve isografts and allografts in normal and immunosuppressed rats. J Comp Neurol 331(1):134–147

    CAS  Article  PubMed  Google Scholar 

  39. Zhang F, Attkiss KJ, Walker M, Buncke HJ (1998) Effect of cryopreservation on survival of composite tissue grafts. J Reconstr Microsurg 14(8):559–564

    CAS  Article  PubMed  Google Scholar 

  40. Zhu Z, Qiao L, Zhao Y, Zhang S (2014a) Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs. Int J Clin Exp Pathol 7(11):7801–7805

    PubMed  PubMed Central  Google Scholar 

  41. Zhu Z, Qiao L, Zhao Y, Zhang S (2014b) Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs. Int J Clin Exp Pathol 7(11):7801–7805

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Alberto Centeno for his assistance and commitment in the excellent care taken of the animals, Catalina Sueiro and Ada Castro for their major support in the assessment of the electronic microscopy images, and Jorge Pombo Otero and Ana Reguero for their invaluable assistance in the interpretation of the histological images.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sara Alicia González Porto.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González Porto, S.A., Domenech, N., González Rodríguez, A. et al. The addition of albumin improves Schwann cells viability in nerve cryopreservation. Cell Tissue Bank 19, 507–517 (2018). https://doi.org/10.1007/s10561-018-9700-7

Download citation

Keywords

  • Cryopreservation
  • Dimethyl sulfoxide
  • Peripheral nerve injuries
  • Serum albumin