Skip to main content

Advertisement

Log in

The efficacy and sterilisation of human decellularised dermal allografts with combinations of cupric ions and hydrogen peroxide

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Decellularised tissue allografts have been used in reconstructive surgical applications and transplantation for many years. Some of the current methods of sterilisation have a detrimental effect on the tissue graft structure and function. The anti-microbial activity of cupric ions and hydrogen peroxide (H2O2) are well known however their combined application is not currently utilised as a decontamination agent in the tissue banking world sector. The aim of this study was to determine the combined concentrations of copper chloride (CuCl2) and H2O2 that have the optimal bactericidal and sporicidal activity on decellularised (dCELL) human dermis. The first part of this study established the decimal reduction time (D-value) of CuCl2 (0.1 mg/L and 1 mg/L) together with H2O2 (0.01, 0.1, 0.5 and 1%) for Staphylococcus epidermidis, Escherichia coli and Bacillus subtilis spores. The second part of this study identified the most effective CuCl2 and H2O2 concentration that decontaminated dCELL human dermis inoculated with these pathogens. Of all the concentrations tested, 0.1 mg/L CuCl2 in combination with 1% H2O2 had the shortest D-value; S. epidermidis D = 3.15 min, E. coli D = 2.62 min and B. subtilis spores D = 18.05 min. However when adsorbed onto dCELL dermis, S. epidermidis and E. coli were more susceptible to 1 mg/L CuCl2 together with 0.5% H2O2. These studies show promise of CuCl2–H2O2 formulations as potential sterilants for decellularised dermal allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273(Pt 3):601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atique FB, Khalil MM (2014) The bacterial contamination of allogenic bone and emergence of multidrug-resistance bacteria in tissue bank. Biomed Res Int. doi:10.1155/2014/430581

  • Baatout S, De Bover P, Mergeay M (2006) Physiological changes induced in four bacterial strains following oxidative stress. Prikl Biokhim Mikrobiol 42(4):418–427

    CAS  PubMed  Google Scholar 

  • Barrios RH, Leyes M, Amillo S, Oteiza C (1994) Bacterial contamination of allografts. Acta Orthop Belg 60(2):152–154

    CAS  PubMed  Google Scholar 

  • Bayliss CE, Waites WM (1976) The effect of hydrogen peroxide on spores of clostridium bifermentans. J Gen Microbiol 96(2):401–407

    Article  CAS  PubMed  Google Scholar 

  • Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TS (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74(1):72–77

    Article  CAS  PubMed  Google Scholar 

  • Cebotari S, Metsching H, Kallenbach K, Kostin S, Repin O, Klecka C, Ciubotaru A, Haverich A (2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106:63–68

    Article  Google Scholar 

  • Choi JS, Kim BS, Kim JY, Kim JD, Choi YC, Yang HJ, Park K, Lee HY, Cho YW (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A 97(3):292–299

    Article  PubMed  Google Scholar 

  • Deijekers RL, Bloem RM, Petit PL, Brand R, Vehmever SB, Veen MR (1997) Contamination of bone allografts: analysis of incidence and predisposing factors. J Bone Joint Surg Br 9(1):161–166

    Article  Google Scholar 

  • Dittmar HR, Baldwin IL, Miller SB (1930) The influence of certain inorganic salts in the germicidal activity of hydrogen peroxide. J Bacteriol 19(3):203–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eagle MJ, Rooney P, Lomas R, Kearney JN (2005) Validation of radiation dose received by frozen unprocessed bone during terminal sterilisation. Cell Tissue Bank 6(3):221–230

    Article  CAS  PubMed  Google Scholar 

  • Elzanowska H, Wolcott RG, Hannum DM, Hurst JK (1995) Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte function. Free Radic Biol Med 18(3):437–449

    Article  CAS  PubMed  Google Scholar 

  • Endean T (2007) Allograft irradiation. Orthopedics 30(4):257

    PubMed  Google Scholar 

  • Evans DJ, Allison DG, Brown MRW, Gilbert P (1990) Effect of growth rate on resistance of gram-negative biofilms to cetrimide. J Antimicrob Chemother 26(4):473–478

    Article  CAS  PubMed  Google Scholar 

  • Finnegan M, Yang Z, Mimni M (2010) Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother 65(10):2108–2115

    Article  CAS  PubMed  Google Scholar 

  • Garba IH, Ubom GA, Ejiogu NB (2006) Serum copper concentration in adults with acute uncomplicated falciparum malaria infection. Biol Trace Elem Res 113(2):125–130

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy and stringent response. Antimicrob Chemother 34(10):1865–1868

    Article  CAS  Google Scholar 

  • Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodelling. J Biomed Mater Res B Appl Biomater 84(1):205–217

    Article  PubMed  Google Scholar 

  • Goyal SM, Chander Y, Yezli S, Otter JA (2014) Evaluating virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect 86(4):255–259

    Article  CAS  PubMed  Google Scholar 

  • Grieb TA, Forng RY, Bogdansky S, Ronholdt C, Parks B, Drohan WN, Burgess WH, Lin J (2006) High-dose gamma irradiation for soft tissue allografts: high margin of safety with biomechanical integrity. J Orthop Res 24(5):1101–1108

    Article  Google Scholar 

  • Gupta SK, Dinda AK, Mishra NC (2017) Antibacterial activity and composition decellularized goat lung extracellular matrix for its tissue engineering applications. Biol Eng Med 2(1):1–7

    Article  Google Scholar 

  • Hogg P, Rooney P, Ingham E, Kearney JN (2013) Development of a decellularised dermis. Cell Tissue Bank 14(3):465–474

    Article  CAS  PubMed  Google Scholar 

  • Hogg P, Rooney P, Leow-Dyke S, Brown C, Ingham E, Kearney JN (2015) Development of a terminally sterilised decellularised dermis. Cell Tissue Bank 16(3):351–359

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Dawson RA, Pegg DE, Kearney JN, MacNeil S (2004) Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Repair Regener 12(3):276–287

    Article  Google Scholar 

  • Ireland L, Spelman D (2005) Bacterial contamination of tissue allografts-experiences of the donor tissue bank of Victoria. Cell Tissue Bank 6(3):181–189

    Article  PubMed  Google Scholar 

  • Jackson DW, Windler GE, Simon TM (1990) Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med 18(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK (2004) Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med 350(25):2564–2571

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DH, Vincent EM, Meade GK, Watson CL, Fan X (2014) Inactivation of human norovirus using chemical sanitizers. Int J Food Microbiol 171:94–99

    Article  CAS  PubMed  Google Scholar 

  • Klapes NA, Vesley D (1990) Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant. Appl Environ Microbiol 56(2):502–506

    Google Scholar 

  • Lazary A, Weinberg I, Vatine JJ, Jefidoff A, Bardenstein R, Borkow G, Ohana N (2014) Reduction of health-care associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens. Int J Infect Dis 24:23–29

    Article  CAS  PubMed  Google Scholar 

  • Leow-Dyke SF, Rooney P, Kearney J (2016) Evaluation of copper and hydrogen peroxide treatments on the biology, biomechanics and cytotoxicity of decellularized dermal allografts. Tissue Eng Part C Methods 22(3):290–300

    Article  CAS  PubMed  Google Scholar 

  • May SR, Wainwright JE, DeClement FA (1985) Variables determining the amount of microbial contamination on cadaveric allograft skin used as a biological wound dressing. Burns Incl Therm Inj 11(4):242–251

    Article  CAS  PubMed  Google Scholar 

  • Mazzola PG, Penna TC, Martins AM (2003) Determination of decimal reduction time (D value) of chemical reagents used in hospitals for disinfection purposes. BMC Infect Dis 3(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzola PG, Martins AM, Penna TC (2006) Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system. BMC Infect Dis 6(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzola PG, Jozala AF, De Lencastre Novaes LC, Moriel P, Penna TC (2009) Choice of sterilizing/disinfecting agent-determination of the decimal reduction time (D-Value). Braz J Pharm Sci 45(4):701–708

    Article  CAS  Google Scholar 

  • Melly E, Cowan AE, Setlow P (2002) Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J Appl Microbiol 93(2):316–325

    Article  CAS  PubMed  Google Scholar 

  • Moreau MF, Gallois Y, Baslé MF, Chappard D (2000) Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 21(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Morgan DA, Forwood MR (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105

    Article  PubMed  Google Scholar 

  • Roberts C, Antonoplos P (1998) Inactivation of human immunodeficiency virus type 1, hepatitis A virus, respiratory syncytial virus, vaccina virus, herpes simplex virus type 1 and poliovirus type 2 by hydrogen peroxide gas plasma sterilization. Am J Infect Control 26(2):94–101

    Article  CAS  PubMed  Google Scholar 

  • Rosario DJ, Reilly GC, Emadaldeen AS, Glover M, Bullock AJ, MacNeil S (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regener Med 3(2):145–156

    Article  CAS  Google Scholar 

  • Rutherford G, Marquis RJ (1997) Reversible sporicidal action of cuprous ions. Ind Microbiol Biotechnol 18(4):223–225

    Article  CAS  Google Scholar 

  • Saegeman V, Lismont D, Verduyckt B, Ectors N, Stuyck J, Verhaegen J (2007) Antimicrobial susceptibility of coagulase-negative staphylococci on tissue allografts and isolates from orthopaedic patients. J Orthop Res 25(4):501–507

    Article  CAS  PubMed  Google Scholar 

  • Sagripanti JL, Bonifacino A (1996) Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol 62(2):545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagripanti JL, Bonifacino A (1999) Bacterial spores survive treatment with commercial sterilants and disinfectants. Appl Environ Microbiol 65(9):4255–4260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagripanti JL, Kraemer KH (1989) Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J Biol Chem 264(3):1729–1734

    CAS  PubMed  Google Scholar 

  • Sagripanti JL, Goering PL, Lamanna A (1991) Interaction of copper with DNA and antagonism by other metals. Toxicol Appl Pharmacol 110(3):477–485

    Article  CAS  PubMed  Google Scholar 

  • Sagripanti JL, Routson LB, Lytle CD (1993) Virus inactivation by copper or iron ions alone and in the presence of hydrogen peroxide. Appl Environ Microbiol 59(12):4374–4376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagripanti JL, Routson LB, Bonifacino AC, Lytle CD (1997) Mechanism of copper-mediated inactivation of herpes simplex virus. Antimicrob Agents Chemother 41(4):812–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA, Michels HT, Schmidt MG (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34(5):479–486

    Article  PubMed  Google Scholar 

  • Samsell BJ, Moore MA (2012) Use of controlled low dose gamma irradiation to sterilize allograft tendons for ACL reconstruction: biomechanical and clinical perspective. Cell Tissue Bank 13(2):217–223

    Article  CAS  PubMed  Google Scholar 

  • Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by metallic copper surfaces. Appl Environ Microbiol 77(3):794–802

    Article  CAS  Google Scholar 

  • Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M (2002) Antimicrobial activity associated with extracellular matrices. Tissue Eng 8(1):63–71

    Article  PubMed  Google Scholar 

  • Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A (2008) Remodelling of ACL allografts is inhibited by peracetic acid sterilisation. Clin Orthop Relat Res 466(8):1810–1818

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt MG, Attaway HH, Fairley SE, Steed LL, Michels HT, Salgado CD (2013) Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit. Infect Control Hosp Epidemiol 34(5):530–533

    Article  PubMed  Google Scholar 

  • Singh R, Singh D (2012) Sterilization of bone allografts by microwave and gamma irradiation. Int J Radiat Biol 88(9):661–669

    Article  CAS  PubMed  Google Scholar 

  • Solassol J, Pastore M, Crozet C, Perrier V, Lehmann S (2006) A novel copper-hydrogen peroxide formulation for prion decontamination. J Infect Dis 194(6):865–869

    Article  CAS  PubMed  Google Scholar 

  • Sun WQ, Leung P (2008) Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater 4(4):817–826

    Article  PubMed  Google Scholar 

  • Tuladhar E, Terpstra P, Koopmans M, Duizer E (2012) Virucidal efficacy of hydrogen peroxide vapour disinfection. J Hosp Infect 80(2):110–115

    Article  CAS  PubMed  Google Scholar 

  • Von Woedtke T, Kramer A (2008) The limits of sterility assurance. GMS Hyg Infect Control 3(3):1863–5245

    Google Scholar 

  • Wheeldon LJ, Worthingtin T, Hilton AC, Elliott TS, Lambert PA (2008) Physical and chemical factors influencing the germination of clostridium difficile spores. J Appl Microbiol 105(6):2223–2230

    Article  CAS  PubMed  Google Scholar 

  • Wilshaw SP, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12(8):2117–2129

    Article  CAS  PubMed  Google Scholar 

  • Wilshaw SP, Rooney P, Berry H, Kearney JN, Homer-Vanniasinkam S, Fisher J (2012) Development and characterisation of acellular arterial matrices. Tissue Eng Part A 18(5–6):471–483

    Article  CAS  PubMed  Google Scholar 

  • Woon CY, Kraus A, Raghavan SS, Pridgen BC, Megerle K, Pham H, Chang J (2011) Three-dimensional-construct bioreactor conditioning in human tendon tissue engineering. Tissue Eng Part A 17(19–20):2561–2572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of NHS Blood and Transplant with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Leow-Dyke.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leow-Dyke, S.F., Rooney, P. & Kearney, J.N. The efficacy and sterilisation of human decellularised dermal allografts with combinations of cupric ions and hydrogen peroxide. Cell Tissue Bank 18, 561–572 (2017). https://doi.org/10.1007/s10561-017-9660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9660-3

Keywords

Navigation