Skip to main content

Advertisement

Log in

Comparison of impact of two decontamination solutions on the viability of the cells in human amnion

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adds PJ, Hunt CJ, Dart JKG (2001) Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85(8):905–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2(8254):1003–1005

    Article  CAS  PubMed  Google Scholar 

  • Altman BJ, Rathmell JC (2012) Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 4(9):a008763

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf NN, Siyal NA, Sultan S, Adhi MI (2015) Comparison of efficacy of storage of amniotic membrane at −20 and −80 °C. J Coll Physicians Surg Pak 25(4):264–267

    PubMed  Google Scholar 

  • Aykut V, Celik U, Celik B (2014) The destructive effects of antibiotics on the amniotic membrane ultrastructure. Int Ophthalmol 35(3):381–385

    Article  PubMed  Google Scholar 

  • Bourne GL (1960) The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol 79:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Bourne GL (1962) The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgrad Med J 38:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabodevilla AG, Sanchez-Caballero L, Nintou E et al (2013) Cell survival during complete nutrient deprivation depends on lipid droplet-fueled -oxidation of fatty acids. J Biol Chem 288(39):27777–27788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua HS, Gomes JAP, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49(1):51–77

    Article  PubMed  Google Scholar 

  • Dua HS, Maharajan VS, Hopkinson A (2006) Controversies and limitations of amniotic membrane in ophthalmic surgery. In: Reinhard T, Larkin DFP (eds) Cornea and external eye disease. Springer, Berlin, pp 21–33

    Chapter  Google Scholar 

  • Duan-Arnold Y, Gyurdieva A, Johnson A et al (2015) Soluble factors released by endogenous viable cells enhance the antioxidant and chemoattractive activities of cryopreserved amniotic membrane. Adv Wound Care 4(6):329–338

    Article  Google Scholar 

  • Ganatra MA, Durrani KM (1996) Method of obtaining and preparation of fresh human amniotic membrane for clinical use. J Pak Med Assoc 46(6):126–128

    CAS  PubMed  Google Scholar 

  • Gatto C, Giurgola L, D‘Amato-Tothova J (2013) A suitable and efficient procedure for the removal of decontaminating antibiotics from tissue allografts. Cell Tissue Bank 14(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Gholipourmalekabadi M, Sameni M, Radenkovic D et al (2016) Decellularized human amniotic membrane: How viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif 49(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Gruss JS, Jirsch DW (1978) Human amniotic membrane: a versatile wound dressing. Can Med Assoc J 118(10):1237–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H (2006) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8(1):1–8

    Article  Google Scholar 

  • Ishino Y, Sano Y, Nakamura T, Connon CJ et al (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45(3):800–806

    Article  PubMed  Google Scholar 

  • Jackson C, Eidet JR, Reppe S, Aass HCD, Tønseth KA, Roald B, Lyberg T, Utheim TP (2015) Effect of storage temperature on the phenotype of cultured epidermal cells stored in xenobiotic-free medium. Curr Eye Res 41(6):757–768

    Article  PubMed  Google Scholar 

  • Khokhar S, Sharma N, Kumar H, Soni A (2001) Infection after use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 20(7):773–774

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Tseng SC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14(5):473–484

    Article  CAS  PubMed  Google Scholar 

  • King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JRG (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28(2–3):161–169

    Article  CAS  PubMed  Google Scholar 

  • Kumagai K, Otsuki Y, Ito Y et al (2001) Apoptosis in the normal human amnion at term, independent of Bcl-2 regulation and onset of labour. Mol Hum Reprod 7(7):681–689

    Article  CAS  PubMed  Google Scholar 

  • Laurent R, Nallet A, Obert L et al (2014) Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank 15(2):267–275

    Article  PubMed  Google Scholar 

  • Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123(3):303–312

    Article  CAS  PubMed  Google Scholar 

  • Lindenmair A, Hatlapatka T, Kollwig G et al (2012) Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 1(4):1061–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra C, Jain AK (2014) Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant 4(2):111–121

    PubMed  PubMed Central  Google Scholar 

  • Mamede AC, Carvalho MJ, Abrantes AM et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458

    Article  CAS  PubMed  Google Scholar 

  • Maral T, Borman H, Arslan H et al (1999) Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns 25(7):625–635

    Article  CAS  PubMed  Google Scholar 

  • Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40(6):693–696

    Article  CAS  PubMed  Google Scholar 

  • Mejía LF, Acosta C, Santamaria JP (2000) Use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 19(3):288–291

    Article  PubMed  Google Scholar 

  • Mrázová H, Koller J, Kubišová K et al (2015) Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization. Cell Tissue Bank 17(2):255–260

    Article  PubMed  Google Scholar 

  • Paolin A, Cogliati E, Trojan D et al (2016) Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank 17(1):51–58

    Article  PubMed  Google Scholar 

  • Pegg DE (1989) Viability assays for preserved cells, tissues, and organs. Cryobiology 26(3):212–231

    Article  CAS  PubMed  Google Scholar 

  • Perepelkin NMJ, Hayward K, Mokoena T et al (2016) Cryopreserved amniotic membrane as transplant allograft: viability and post-transplant outcome. Cell Tissue Bank 17(1):39–50

    Article  PubMed  Google Scholar 

  • Rautmann G, Daas A, Buchheit KH (2010) Collaborative study for the establishment of the second international standard for amphotericin B. Pharmeur Bio Sci Notes 2010(1):1–13

    CAS  PubMed  Google Scholar 

  • Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31(2):216–225

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Purohit S, Chacharkar MP et al (2007) Microbiological safety and clinical efficacy of radiation sterilized amniotic membranes for treatment of second-degree burns. Burns 33(4):505–510

    Article  PubMed  Google Scholar 

  • Tan EK, Cooke M, Mandrycky C et al (2014) Structural and biological comparison of cryopreserved and fresh amniotic membrane tissues. J Biomater Tissue Eng 4(5):379–388

    Article  CAS  Google Scholar 

  • Thomasen H, Pauklin M, Steuhl KP, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefe’s Arch Clin Exp Ophthalmol 247(12):1691–1700

    Article  Google Scholar 

  • von Versen-Hoeynck F, Syring C, Bachmann S, Moller DE (2004) The influence of different preservation and sterilisation steps on the histological properties of amnion allografts-light and scanning electron microscopic studies. Cell Tissue Bank 5(1):45–56

    Article  Google Scholar 

  • von Versen-Hoeynck F, Steinfeld AP, Becker J et al (2008) Sterilization and preservation influence the biophysical properties of human amnion grafts. Biologicals 36(4):248–255

    Article  Google Scholar 

  • Zidan SM, Eleowa SA, Nasef MA et al (2015) Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns 41(7):1498–1503

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Norwegian Financial Mechanism 2009–2014 and the Ministry of Education, Youth and Sports under Project Contract No. MSMT-28477/2014, Project 7F14156. Institutional support was provided by the PRVOUK-P24/LF1/3 and SVV Project No. 260256/2016 programs of Charles University. Authors thank Brigita Vesela, Dana Sadilkova, Zuzana Rejnysova from Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, for their excellent technical assistance with the Sudan III staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Jirsova.

Ethics declarations

Conflict of interest

Ingrida Smeringaiova, Peter Trosan, Miluse Berka Mrstinova, Jan Matecha, Jan Burkert, Jan Bednar and Katerina Jirsova declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeringaiova, I., Trosan, P., Mrstinova, M.B. et al. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion. Cell Tissue Bank 18, 413–423 (2017). https://doi.org/10.1007/s10561-017-9636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9636-3

Keywords

Navigation