Skip to main content

Advertisement

Log in

Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Regenerative medicine, based on the use of stem cells, scaffolds and growth factors, has the potential to be a good approach for restoring damaged tissues of the central nervous system. This study investigated the use of human amniotic mesenchymal stem cells (hAMSC), human amniotic epithelial stem cells (hAESC), and human Wharton’s jelly mesenchymal stem cells (hWJMSC) derived from human umbilical cord as a source of stem cells, and the potential of the human amniotic membrane (HAM) as a scaffold and/or source of growth factors to promote nerve regeneration. The hAMSC and hAESC obtained from HAM and the hWJMSC from umbilical cords were cultured in induction medium to obtain neural-like cells. The morphological differentiation of hAMSC, hAESC and hWJMSC into neural-like cells was evident after 4–5 days, when they acquired an elongated and multipolar shape, and at 21 days, when they expressed neural and glial markers. On other way, the HAM was completely decellularized without affecting the components of the basement membrane or the matrix. Subsequently, hAMSC, hAESC and hWJMSC differentiated into neural-like cells were seeded onto the decellularized HAM, maintaining their morphology. Finally, conditioned media from the HAM allowed proliferation of hAMSC, hAESC and hWJMSC differentiated to neural-like cells. Both HAM and umbilical cord are biomaterials with great potential for use in regenerative medicine for the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brohlin M, Mahay D, Novikov LN, Terenghi G, Wiberg M, Shawcross SG, Novikova LN (2009) Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64:41–49

    Article  PubMed  Google Scholar 

  • Castillo-Melendez M, Yawno T, Jenkin G, Miller SL (2013) Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci 7:194–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsu LF, Hsu LW, Tsai MS (2010) Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells Tissues Organ 192:93–105

    Article  Google Scholar 

  • Cho H, Seo YK, Jeon S, Yoon HH, Choi YK, Park JK (2012) Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci 90:591–599

    Article  CAS  PubMed  Google Scholar 

  • Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG (2011) Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 13:918–932

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Engvall E, Varon S, Manthorpe M (1987) Human amnion membrane as a substratum for cultured peripheral and central nervous system neurons. Brain Res 430:1–10

    CAS  PubMed  Google Scholar 

  • Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010a) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857

    Article  PubMed  Google Scholar 

  • Díaz-Prado S, Rendal-Vázquez ME, Muiños-López E, Hermida-Gómez T, Rodríguez-Cabarcos M, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010b) Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell Tissue Bank 11:183–195

    Article  PubMed  Google Scholar 

  • Elwan MA, Ishii T, Sakuragawa N (2003) Evidence of dopamine D1 receptor mRNA and binding sites in cultured human amniotic epithelial cells. Neurosci Lett 344:157–160

    Article  CAS  PubMed  Google Scholar 

  • Garzón I, Pérez-Köhler B, Garrido-Gómez J, Carriel V, Nieto-Aguilar R, Martín-Piedra MA, García-Honduvilla N, Buján J, Campos A, Alaminos M (2012) Evaluation of the cell viability of human Wharton’s jelly stem cells for use in cell therapy. Tissue Eng Part C Methods 18:408–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Chai J, Sun T, Li D, Tao R (2011) Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun 413:561–565

    Article  CAS  PubMed  Google Scholar 

  • Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90:261–269

    Article  PubMed  Google Scholar 

  • Kesting MR, Wolff KD, Hohlweg-Majert B, Steinstraesser L (2008) The role of allogenic amniotic membrane in burn treatment. J Burn Care Res 29:907–916

    Article  PubMed  Google Scholar 

  • Li Z, Qin H, Feng Z, Liu W, Zhou Y, Yang L, Zhao W, Li Y (2013) Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res 8:3441–3448

    PubMed  PubMed Central  Google Scholar 

  • Liang HS, Liang P, Xu Y, Wu JN, Liang T, Xu XP, Liu EZ (2009) Denuded human amniotic membrane seeding bone marrow stromal cells as an effective composite matrix stimulates axonal outgrowth of rat neural cortical cells in vitro. Acta Neurochir 151:1113–1120

    Article  PubMed  Google Scholar 

  • Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278:35–44

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH (2005) Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J 118:1987–1993

    CAS  PubMed  Google Scholar 

  • Manochantr S, Tantrawatpan C, Kheolamai P, U-pratya Y, Supokawej A, Issaragrisil S (2010) Isolation, characterization and neural differentiation potential of amnion derived mesenchymal stem cells. J Med Assoc Thai 93(Suppl 7):S183–S191

    PubMed  Google Scholar 

  • Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76:130–144

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Marongiu F, Dorko K, Ellis EC, Strom SC (2010) Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol Chapter 1: Unit 1E.3

  • Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Ahmadiani A, Ghanavi J, Jorjani M (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater 19:22–29

    Article  CAS  PubMed  Google Scholar 

  • Parolini O, Caruso M (2011) Review: preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 32(Suppl 2):S186–S195

    Article  PubMed  Google Scholar 

  • Rendal-Vázquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, López-Rodríguez I, Domenech-García N, Andión-Núñez C, Blanco-García F (2012) Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank 13:513–519

    Article  PubMed  Google Scholar 

  • Sakuragawa N, Misawa H, Ohsugi K, Kakishita K, Ishii T, Thangavel R, Tohyama J, Elwan M, Yokoyama Y, Okuda O, Arai H, Ogino I, Sato K (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232:53–56

    Article  CAS  PubMed  Google Scholar 

  • Sanluis-Verdes A, Yebra-Pimentel Vilar MT, García-Barreiro JJ, García-Camba M, Ibáñez JS, Doménech N, Rendal-Vázquez ME (2015) Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent. Cell Tissue Bank 16:411–423

    Article  CAS  PubMed  Google Scholar 

  • Soleymaninejadian E, Pramanik K, Samadian E (2012) Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 67:1–8

    Article  CAS  PubMed  Google Scholar 

  • Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    Article  CAS  PubMed  Google Scholar 

  • Steed DL, Trumpower C, Duffy D, Smith C, Marshall V, Rupp R, Robson M (2008) Amnion-derived cellular cytokine solution: a physiological combination of cytokines for wound healing. Eplasty 7(8):e18

    Google Scholar 

  • Tamagawa T, Ishiwata I, Ishikawa H, Nakamura Y (2008) Induced in vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell 21:38–45

    Article  PubMed  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  • Uberti MG, Pierpont YN, Ko F, Wright TE, Smith CA, Cruse CW, Robson MC, Payne WG (2010) Amnion-derived cellular cytokine solution (ACCS) promotes migration of keratinocytes and fibroblasts. Ann Plast Surg 64:632–635

    CAS  PubMed  Google Scholar 

  • Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Suzuki Y, Araie M, Kashiwagi K, Otori Y, Sakuragawa N (2003) Factors secreted by human amniotic epithelial cells promote the survival of rat retinal ganglion cells. Neurosci Lett 341:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Shirakata Y, Tokumaru S, Xiuju D, Tohyama M, Hanakawa Y, Hirakawa S, Sayama K, Hashimoto K (2009) Living skin equivalents constructed using human amnions as a matrix. J Dermatol Sci 56:188–195

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Sun HM, Yan JH, Xue H, Wu B, Dong F, Li WS, Ji FQ, Zhou DS (2013) Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells. J Neurosci Res 91:978–986

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Marta García for technical assistance. We appreciate the collaboration of “Servicio de Ginecología” of CHUAC providing us HAMs and umbilical cords. We would like to thank Biobank of “A Coruña” (XXIAC-INIBIC) for providing us the technical, ethical and legal advice necessary for the development of our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nieves Doménech or María Esther Rendal-Vázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanluis-Verdes, A., Sanluis-Verdes, N., Manso-Revilla, M.J. et al. Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord. Cell Tissue Bank 18, 1–15 (2017). https://doi.org/10.1007/s10561-016-9595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9595-0

Keywords

Navigation