Advertisement

Cell and Tissue Banking

, Volume 17, Issue 4, pp 689–697 | Cite as

Tissue reaction of deproteinized bovine bone matrix grafting in ectopic site: histological study on sheep

  • João Ricardo Almeida GrossiEmail author
  • Rodrigo Bonacin
  • Viviane Rozeira Crivelaro
  • Allan Fernando Giovanini
  • João César Zielak
  • Tatiana Miranda Deliberador
Article
  • 94 Downloads

Abstract

The aim of this paper was to evaluate through histological analysis of the tissue reaction of deproteinized bovine bone matrix (DBBM) when inserted into the site of intramuscular ectopic sheep. In this study, 16 sheep received 3 groups and these were divided into 2 experimental times: Group 1—sham group, Group 2—particulate autogenous bone and Group 3—DBBM granules. All animals underwent surgical procedures for insertion of materials in an ectopic site (muscles of the lower back and after 3 and 6 months postoperatively, the samples were evaluated by histological analysis. The results indicated that the Sham group showed dense collagen fibers and thin, characterizing fibrosis at 3 and 6 months. In the autograft group there was a significant amount of collagen deposition and decreased inflammation at 6 months postoperatively. Group of DBBM, it was noted the presence of dense connective tissue and surrounding remaining particles was observed the formation of with osteoid characteristic tissue. The DBBM demonstrated biocompatibility, osteoconductivity and small osteogenesis capacity on ectopic site.

Keywords

Bone grafts Reactions graft Bone regeneration Ectopic sites Deproteinized bovine bone matrix Sheep 

Notes

Compliance with ethical standards

Human and animals rights statement

We the authors, also declare that this study was submitted to the Research Ethics Committee on Animal Use (CEUA) at the Positivo University (Protocol 21/2011) in accordance with the provisions of the Arouca Law (11794/2008) and ethical principles of the Brazilian Society of Laboratory Animal Science (SBCAL) and standard protocol for sedation in animals.

References

  1. Armand S, Kirsch A, Sergent C, Kemoun P, Brunel G (2002) Radiographic and histologic evaluation of a sinus augmentation with composite bone graft: a clinical case report. J Periodontol 73:1082–1088CrossRefPubMedGoogle Scholar
  2. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27CrossRefGoogle Scholar
  3. Carmagnola D, Adriaens P, Berglundh T (2003) Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res 14:137–143CrossRefPubMedGoogle Scholar
  4. Caubet J, Ramis JM, Ramos-Murguialday M, Morey MA, Monjo M (2015) Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss(R) or BoneCeramic(R). Clin Oral Implants Res 26:727–735CrossRefPubMedGoogle Scholar
  5. Funes FJ, Granados Mdel M, Morgaz J, Navarrete R, Fernandez-Sarmiento A, Gomez-Villamandos R, Munoz P, Quiros S, Carrillo JM, Lopez-Villalba I, Dominguez JM (2015) Anaesthetic and cardiorespiratory effects of a constant rate infusion of fentanyl in isoflurane-anaesthetized sheep. Vet Anaesth Analg 42:157–164CrossRefPubMedGoogle Scholar
  6. Gao J, Knaack D, Goldberg VM, Caplan AI (2004) Osteochondral defect repair by demineralized corticalbone matrix. Clin Orthop Relat Res 427:S62–S66CrossRefGoogle Scholar
  7. Khamees J, Darwiche MA, Kochaji N (2012) Alveolar ridge augmentation using chin bone graft, bovine bone mineral, and titanium mesh: clinical, histological, and histomorphomtric study. J Indian Soc Periodontol 16:235–240CrossRefPubMedPubMedCentralGoogle Scholar
  8. Khorsand A, Rasouli Ghahroudi AA, Motahhari P, Rezaei Rad M, Soleimani Shayesteh Y (2012) Histological evaluation of Accell Connexus((R)) and Bio-Oss((R)) on quality and rate of bone healing: a single blind experimental study on rabbit’s calvarium. J Dent (Tehran) 9:116–127Google Scholar
  9. Kinoshita Y, Maeda H (2013) Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal 2013:863157CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kubosch EJ, Bernstein A, Wolf L, Fretwurst T, Nelson K, Schmal H (2016) Clinical trial and in vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. BMC Musculoskelet Disord 17:77CrossRefPubMedPubMedCentralGoogle Scholar
  11. Laurencin CT, Katti DS (2003) Repair and restore with tissue engineering. IEEE Eng Med Biol Mag 22:16–17CrossRefPubMedGoogle Scholar
  12. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36:1086–1093CrossRefPubMedGoogle Scholar
  13. Liu HY, Zheng H, Hou XP, Zhong WJ, Ying XX, Chai SL, Ma GW (2014) Bio-Oss((R)) for delayed osseointegration of implants in dogs: a histological study. Br J Oral Maxillofac Surg 52:729–734CrossRefPubMedGoogle Scholar
  14. Manfro R, Fonseca FS, Bortoluzzi MC, Sendyk WR (2014) Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: bio-oss, bone-fill and gen-ox anorganic. J Maxillofac Oral Surg 13:464–470CrossRefPubMedGoogle Scholar
  15. Mellati E, Chen S, Davies H, Fitzgerald W, Darby I (2015) Healing of Bio-Oss(R) grafted marginal gaps at implants placed into fresh extraction sockets of incisor teeth in dogs: a study on the effect of submerged vs. non-submerged healing. Clin Oral Implants Res 26:553–562CrossRefPubMedGoogle Scholar
  16. Netto HD, Olate S, Kluppel L, do Carmo AM, Vasquez B, Albergaria-Barbosa J (2013) Histometric analyses of cancellous and cortical interface in autogenous bone grafting. Int J Clin Exp Pathol 6:1532–1537PubMedPubMedCentralGoogle Scholar
  17. Norton MR, Odell EW, Thompson ID, Cook RJ (2003) Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implants Res 14:775–783CrossRefPubMedGoogle Scholar
  18. Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS (2012) Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 13:639–651CrossRefPubMedGoogle Scholar
  19. Rogers GF, Greene AK (2012) Autogenous bone graft: basic science and clinical implications. J Craniofac Surg 23:323–327CrossRefPubMedGoogle Scholar
  20. Rokn AR, Khodadoostan MA, Reza Rasouli Ghahroudi AA, Motahhary P, Kharrazi Fard MJ, Bruyn HD, Afzalifar R, Soolar E, Soolari A (2011) Bone formation with two types of grafting materials: a histologic and histomorphometric study. Open Dent J 5:96–104CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sahar DE, Walker JA, Wang HT, Stephenson SM, Shah AR, Krishnegowda NK, Wenke JC (2012) Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D, L-lactide) scaffolds in vivo. J Craniofac Surg 23:913–918CrossRefPubMedGoogle Scholar
  22. Scattarella A, Ballini A, Grassi FR, Carbonara A, Ciccolella F, Dituri A, Nardi GM, Cantore S, Pettini F (2010) Treatment of oroantral fistula with autologous bone graft and application of a non-reabsorbable membrane. Int J Med Sci 7:267–271CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sculean A, Chiantella GC, Arweiler NB, Becker J, Schwarz F, Stavropoulos A (2008) Five-year clinical and histologic results following treatment of human intrabony defects with an enamel matrix derivative combined with a natural bone mineral. Int J Periodontics Restor Dent 28:153–161Google Scholar
  24. Sherman BP, Lindley EM, Turner AS, Seim HB 3rd, Benedict J, Burger EL, Patel VV (2010) Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. Eur Spine J 19:2156–2163CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tapety FI, Amizuka N, Uoshima K, Nomura S, Maeda T (2004) A histological evaluation of the involvement of Bio-Oss in osteoblastic differentiation and matrix synthesis. Clin Oral Implants Res 15:315–324CrossRefPubMedGoogle Scholar
  26. Tatullo M, Marrelli M, Cassetta M, Pacifici A, Stefanelli LV, Scacco S, Dipalma G, Pacifici L, Inchingolo F (2012) Platelet Rich Fibrin (P.R.F.) in reconstructive surgery of atrophied maxillary bones: clinical and histological evaluations. Int J Med Sci 9:872–880CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yu BH, Zhou Q, Wang ZL (2014) Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation:a comparative study in the rat. J Biomater Appl 29:243–253CrossRefPubMedGoogle Scholar
  28. Zitzmann NU, Scharer P, Marinello CP, Schupbach P, Berglundh T (2001) Alveolar ridge augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics Restor Dent 21:288–295Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • João Ricardo Almeida Grossi
    • 1
    • 3
    Email author
  • Rodrigo Bonacin
    • 1
  • Viviane Rozeira Crivelaro
    • 2
  • Allan Fernando Giovanini
    • 2
  • João César Zielak
    • 2
  • Tatiana Miranda Deliberador
    • 2
  1. 1.Department of ImplanthologyPositivo UniversityCuritibaBrazil
  2. 2.Professional Masters Program in Clinical DentistryPositivo UniversityCuritibaBrazil
  3. 3.CuritibaBrazil

Personalised recommendations